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Abstract. As cyberattacks targeting edge devices become increasingly
sophisticated, detecting intrusion behaviors becomes increasingly dif-
ficult, demanding effective intrusion detection systems (IDS) tailored
for resource-constrained environments. Existing provenance-based IDSs
show a promising ability to detect benign and attack behaviors, but re-
quire a lot of computing resources to build provenance graphs, which
is not conducive to edge deployment. To address this gap, we propose
a semantic-aware provenance-based IDS, which constructs provenance
graphs and prioritizes security-critical events using semantic roles. Through
structural and semantic analysis on the DARPA Engagement 3 (CADETS)
dataset, we show that role-annotated subgraphs exhibit measurable di-
vergence between benign and attack activities, with certain roles (e.g.,
binary-execution) appearing over 3x more frequently in attack traces,
demonstrating the feasibility of semantic priors for lightweight intrusion
detection.
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1 Introduction

The proliferation of edge computing devices, ranging from smart gateways to
industrial controllers, has significantly expanded the attack surface of modern
cyber-physical systems. These devices, often deployed in uncontrolled environ-
ments and lacking comprehensive security infrastructure, are increasingly tar-
geted by adversaries for persistent surveillance, lateral movement, and sensitive
data exfiltration [5]. The constrained nature of edge platforms, however, poses
fundamental challenges for deploying effective intrusion detection systems (IDS)
that are both precise and lightweight [8].

Recent advances in provenance-based security monitoring have demonstrated
the effectiveness of system-level event graphs in capturing causal dependencies
between entities such as processes, files, and network flows [9]. Provenance graphs
offer a holistic and high-fidelity view of system behavior, enabling accurate detec-
tion and forensic traceability of complex attack chains [7]. However, most existing
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provenance-based IDS frameworks assume access to abundant computational re-
sources and rely on heavyweight graph analytics, rendering them unsuitable for
edge deployment [3].

In this work, we explore the feasibility of integrating semantic-awareness
into provenance graphs as part of an ongoing effort. We present a preliminary
modular framework that constructs, filters, and analyzes provenance subgraphs.
Our key idea is to associate system events with high-level semantic roles (e.g.,
binary-execution) and leverage these roles during training to differentially
weight behavior based on its security relevance. This enables a tunable trade-off
between accuracy and efficiency, while enhancing the interpretability of alerts.
To evaluate our design, we conduct a preliminary analysis using the CADETS
dataset, which includes detailed system call-level traces and ground truth. Our
results indicate that role-annotated subgraphs exhibit measurable divergence be-
tween benign and attack activities. To the best of our knowledge, this is the first
work that introduces semantic role annotation into provenance-based intrusion
detection system in edge computing scenarios.

The remainder of this paper is organized as follows. Section 2 briefly re-
views prior work on provenance-based intrusion detection systems. Section 3
presents the overview of our proposed system architecture. Section 4 presents
the semantic-aware provenance graph modeling. Section 5 presents preliminary
results. Section 6 concludes our work and discusses future research directions.

2 Related Work

Provenance-based IDSes leverage data provenance, which records the origin and
transformation processes of data within a system, to detect malicious activi-
ties more effectively than traditional host-based IDSes. Unlike traditional in-
trusion detection methods that primarily analyze system events in isolation,
Provenance-based IDS provide richer semantic context by constructing prove-
nance graphs—directed acyclic graphs recording causal relationships among sys-
tem entities and events. These systems typically include modules for data col-
lection, graph summarization, intrusion detection, and benchmarking datasets.
Figure 1 illustrates a benign scenario: a common debugging workflow us-
ing LD_PRELOAD. A user connects to the system via SSH and writes a custom
shared library, my_debug_hooks.so, containing specific debugging code. Subse-
quently, the LD_PRELOAD environment variable is configured with the path of
the custom library. Then, the target application (test) is launched. Because of
the LD_PRELOAD setting, the operating system loads the custom library into
the application’s memory first. Finally, the custom library’s code intercepts
function calls from the test process and writes diagnostic data to a log file
(/tmp/app_debug.log). This is a routine, non-intrusive debugging practice.
Provenance-based methods can broadly be categorized into anomaly-based,
rule-based, and tag-propagation-based approaches. Anomaly-based systems [1]
identify intrusions by detecting deviations from established normal behaviors,
rule-based methods [6] utilize predefined rules and signatures, and tag-propagation
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Fig. 1. Illustrative provenance graphs of a benign administrative activity.

methods assign and propagate trustworthiness or risk labels through the prove-
nance graph to highlight suspicious activities.

ALASTOR [1] is a provenance-based IDS framework leveraging graph em-
bedding techniques under the anomaly-based category, tailored specifically for
serverless computing environments. Traditional provenance approaches face chal-
lenges in these environments due to ephemeral function lifetimes and container
reuse, which attackers can exploit to conceal malicious activities from detec-
tion. To overcome these limitations, ALASTOR captures detailed provenance
data at both the system and application layers, tracing interactions such as sys-
tem calls and network requests within each serverless function instance. These
fine-grained events are aggregated into global provenance graphs, enabling pre-
cise reconstruction and analysis of intrusion scenarios. ALASTOR was evaluated
through implementation on the OpenFaaS platform, testing complex intrusion
scenarios targeting serverless applications. The results indicated that ALAS-
TOR reconstructed detailed attack paths that traditional monitoring methods
and several commercially available tools failed to detect.

CAPTAIN 6] is another adaptive provenance intrusion detection framework.
Different from ALASTOR, CAPTAIN employs a rule-based approach. Specifi-
cally designed to overcome the limitations of traditional static-rule provenance
systems, it utilizes a differentiable rule-configuration method based on gradi-
ent descent algorithms to dynamically adjust system parameters, including tag
initialization, tag propagation rates, and alarm generation thresholds. In con-
trast to conventional rule-based provenance intrusion detection systems that
rely on manually configured static rules, CAPTAIN automatically adjusts these
parameters using benign training data, effectively reducing false alarms while
preserving detection accuracy against malicious activities. Experimental evalua-
tions conducted on datasets from DARPA Engagements and datasets generated
from simulated environments demonstrated substantial performance improve-
ments, including over 90% reduction in false alarms compared with traditional
rule-based methods.

Both ALASTOR and CAPTAIN represent significant advancements in the
provenance-based intrusion detection. However, these systems are facing limita-
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tions in lightweight security for edge devices. Thus, there is an urgent need of
lightweight provenance-based intrusion detection system optimized specifically
for the resource-constrained edge environments. This could include reducing the
overhead associated with provenance data collection and analysis, simplifying
provenance graphs, and optimizing graph summarization without compromising
critical security insights.

3 System Design

In this work, we introduce the semantic-aware method into provenance-based
intrusion detection, specifically optimizing the graph construction phase through
semantic-aware filtering.

Goal. This work aims to enhance provenance-based intrusion detection by in-
troducing semantic-awareness into graph construction. We assign high-level se-
mantic roles to system events, focusing on security-critical behaviors.
Assumptions. Provenance traces contain a large volume of semantically irrel-
evant events, and that meaningful roles can be assigned using rules.

3.1 Architecture Overview

Figure 2 illustrates the architecture of the proposed system. The system operates
on a stream of low-level system audit events and produces alerts corresponding
to anomaly signatures. It consists of the following main components:

1. Event Parser:
The event parser processes raw system logs from the widely acknowledged
public datasets provided by DARPA Engagement, where each line contains
a single event record with detailed information about system activities such
as file operations, process executions, network communications, and memory
operations. The parser extracts key components from these logs including
subjects (processes), objects (files, network flows, memory), and events (read,
write, execve, clone, etc.), then standardizes them into a unified format that
can be used to construct provenance graphs.
2. Graph Constructor:

The graph constructor uses data processed by the event parser to generate
a provenance graph. The graph nodes represent the system entities: Sub-
ject nodes capture process information including PID, PPID, command line,
process name, and parent relationships, while Object nodes represent files,
network flows, memory regions, and other system resources with their respec-
tive attributes like file paths, IP addresses, and memory addresses. The edges
between nodes represent the events and operations that occurred between
subjects and objects, each edge containing metadata such as timestamp,
event type, and operation parameters. The system maintains a node buffer to
track entity states and handles node updates when entity properties change
over time. The final graph is serialized into JSON format with separate files



Semantic-Aware Provenance-Based Intrusion Detection for Edge Systems

1. Event = p—
vent parser :—_ Node features 8—_ Edge features
g =
| |
l 2. Graph Constructor l \

p

System logs

Node initialization

¢

)
2
&

g H
e Et

g

CREATE]

’

Edge propagation

£

¢

WRITE

CREATE | LOAD

/
emee

RECY

Y%

108D

CREATE

3
3
a
<
&
o

e

3. Graph Filter and Role Annotator

Process1

WRITE

READ.

WRITE

L]
Pruned edges
and nodes

B
Kol

—

CREATE  L0AD

‘ E

i
g

RECY

Process1

0D

oI

WRITE

PL

Semantic
4 role

CREATE  L0AD

K

B

benign nodes and edges
malicious nodes and edges

: pruned nodes and edges

: Alerts generated for
malicious nodes and edges

A

4. Rule-based
detection engine

|

Alert Generation

A
A A

A -
"

Fig. 2. Architecture overview of the proposed IDS.

for nodes, edges, and principals, creating a comprehensive provenance graph
that captures the complete system execution history and can be used for

intrusion detection through graph-based analysis and rule-based analysis.

Graph Filter and Role Annotator:
The original provenance graph generated by the graph generator contains a
large number of edges and nodes that represent low-risk operations. These
routine operations in the provenance graph take up a lot of memory, making
them unsuitable for edge environments to process. The idea is to apply graph
filters and eliminate redundant events, focusing attention on security-critical
behaviors. The graph filter prunes the edges representing these low-risk op-
erations, which not only reduces memory usage but also improves the clarity

of the risk operations in the provenance graph.

A role annotator is applied to assign high-level semantic roles that cap-
ture the potential impact of each event on system security. We define a
set of deterministic mappings based on file paths, system call types, and
access patterns. For example, any execution of a binary via execve, such
as launching tools in /usr/bin, is categorized as binary-execution, while
read operations from low-sensitivity sources like /dev/tty are labeled as

routine-read.
. Detection Engine:

The detection engine combines rule-based analysis with the Adam optimizer.
The detection engine uses a tag-based propagation system. These tags are
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initialized based on predefined rules (e.g., untrusted files have lower label
vector values) and then propagated through the graph as events occur. The
detection engine works by continuously processing system events and updat-
ing the value of the tags of each node. After an event happens, the detection
engine compares the tag values with learned thresholds to identify attacks.
The system can detect various attack types including FileExec (executing
untrusted files), FileCorruption (modifying high-integrity files), DataLeak
(sending confidential data to untrusted networks), PrivilegeEscalation (gain-
ing root privileges), and MaliciousFileCreation (creating files by untrusted
processes). The detection engine uses Adam optimizer to optimize the propa-
gation strength and detection threshold parameters based on benign training
data. The training process minimizes false positives by adjusting these pa-
rameters to ensure that normal system behavior doesn’t trigger alarms while
maintaining sensitivity to actual attacks. After comparing the tag values with
the detection rules, the alarms would be generated and include information
about the suspicious events, entities, and the specific attack type.

3.2 Threat Model

We consider a threat model where edge devices, including smart gateways and
industrial controllers, operate in environments that are network-untrusted. The
adversary can be local, with remote shell access to the device, and adjacent on
the network, capable of interacting with exposed services and injecting traffic. In
either case, the attacker can execute code, exploit software vulnerabilities, and
misuse legitimate tools.

The attacker aims to execute malicious binaries and perform write operations.
We assume that the attacker has no prior control over the monitoring agent and
cannot tamper with the system audit logs. The logging mechanism is trusted.

The malicious activity, depicted in the Figure 3, is based on an attack scenario
from the DARPA Engagement 5 dataset. The attack sequence demonstrates a
classic post-exploitation pattern. It begins with the attacker connecting to the
system via ssh using stolen credentials. The attack then uses scp to upload
a malicious toolset, including a client named mchk for privilege escalation. Af-
ter establishing a foothold, the mchk client is executed, which employs a local
privilege-escalation technique, and leverages memfd_create to map an anony-
mous, in-memory payload before invoking it, while avoiding on-disk detection.
Operating with full administrative control, the attacker then proceeds to exfil-
trate critical system files, including /etc/passwd and /etc/shadow, as well as
sensitive user documents like /home/admin/biol, back to the remote socket.

4 Semantic-Aware Provenance Graph Modeling

System behavior is modeled using a directed provenance graph G = (V, E,T),
where V' includes heterogeneous entities (e.g., process, files, and network sock-
ets); E encodes interactions between entities (e.g., read-from, write-to, and ez-
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Fig. 3. Illustrative provenance graphs of a multi-stage malicious attack.

ecutes); and T preserves temporal ordering of events. The graph structure cap-
tures causal relationships between system activities and forms the basis of be-
havioral analysis [4].

4.1 Provenance Graph Semantics and Role Annotation

While many provenance systems treat audit events as atomic interactions, this
work augments each event with a high-level semantic role that captures its
functional intent and potential security relevance. These roles are derived us-
ing lightweight, rule-based heuristics that analyze object paths, file types, and
system call contexts.

Given the volume and redundancy of system-level provenance data, this work
focuses on high-value behavioral features.

— Edge Filtering: Routine interactions, such as reading configuration files
and writing logs, are prevalent in both benign and malicious sessions. We
filter edges that correspond to known low-risk actions (e.g., read-from on
/etc/motd) to reduce graph clutter without losing detection sensitivity.

— Role Annotation: We apply deterministic labeling rules to assign each
event a semantic role, as shown in Table 1. These annotations serve dual
purposes: (i) they filter out low-risk behavior during graph construction,
and (ii) they modulate loss weights during model training. For instance,
misclassifying a binary-execution or staging-write event may incur a
higher penalty than a benign routine-read.

4.2 Role-Weighted Training Objective

To reflect the varying semantic importance of different events, we introduce a
role-weighted loss scheme that scales each event’s loss contribution based on its
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Table 1. Semantic Role Definitions

Role Definition

routine-read Reads from non-sensitive locations such as /dev/tty, temporary
user files, or other benign sources. Common in routine system in-
teractions.

privileged-read Read access to sensitive credentials files, including /etc/shadow,
SSH private keys, and password files.

staging-write Writes directed at temporary or staging directories, e.g., /tmp,
/var/tmp. Often used for staging payloads and served as attacker
preparation zones.

binary-execution Execution of a binary file, as captured by execve system calls and
equivalent process launch events.

neutral Events that do not match any defined semantic rules. These are
often low-risk actions not indicative of security-critical behavior.
Used as the default role when no semantic annotation applies.

semantic role. Formally, for each event e with associated role r € R, the final
loss is computed as:
Liotal = Zwr : [:(6), (1)
ecf
where L(e) is the base loss (e.g., reconstruction error), and w, is the role weight
assigned to semantic role 7.

5 Preliminary Evaluation

5.1 Experimental Setup

All offline experiments are conducted on a machine equipped with an Intel
Xeon(R) Silver 4410Y and 256GB RAM. We conduct evaluations on the DARPA
Engagement 3 dataset, specifically focusing on the CADETS scenario. This
dataset is part of DARPA’s Transparent Computing program and was collected
from a real-world enterprise environment under controlled attack conditions. It
offers system-level event traces in the common data model format, including
both benign and malicious activities.

The CADETS trace contains detailed logs of system calls. Each event is
timestamped and linked [6], making it suitable for constructing temporal prove-
nance graphs. The dataset includes several realistic attack campaigns such as
reverse shell injection, credential scraping, and privilege escalation, embedded
within multi-day traces.

5.2 Semantic Subgraph Analysis

To evaluate the feasibility of our approach, we analyzed provenance subgraphs
derived from benign and malicious activity windows. We compute a set of struc-
tural and semantic metrics on each subgraph to investigate whether malicious
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Table 2. Structural comparison of benign vs. attack subgraphs. (mean =+ std.)

Metric Benign Attack

% of routine-read nodes 6.59 + 16.91% 0.70 £+ 5.89%
% of privileged-read nodes 0.01 &+ 0.57% 0.00 + 16.10%
% of binary-execution nodes 1.49 + 8.49% 4.93 + 14.91%
% of staging-write nodes 0.03 £ 1.26% 0.70 £ 5.89%

Table 3. Comparison of training efficiency between w/o and w/ role-weighted loss.

Metric w/o Role-Weighted w/ Role-Weighted
Epochs to Reach Loss < 10 33 26

Epochs to Reach Loss < 1 79 45

Min Final Loss (after 100 epochs) 0.00 0.00

Avg. Loss (Epochs 20-40) 23.23 6.71

behaviors exhibit statistically distinct topological patterns. This allows us to
answer the core question: does the role-annotated subgraph itself encode enough
information to separate benign from attack behavior?

Table 2 compares the proportion of semantically annotated nodes in benign
vs. attack subgraphs. We observe that binary-execution and staging-write
roles are more prevalent in attack graphs, reflecting typical behaviors like launch-
ing malicious payloads and staging operations in temporary storage. In contrast,
routine-read appears more in benign traces, consistent with normal startup
and interactive operations. This distinction validates the design intuition be-
hind our semantic annotation: although individual events may not be malicious
in isolation, their elevated presence in attack subgraphs provides valuable priors
for learning. Consequently, assigning higher weights to such roles during training
can help amplify model sensitivity to stealthy but structurally deviant behaviors.

5.3 Training Efficiency Comparison

To evaluate the efficiency of our semantic-aware training strategy, we compare
the convergence behavior of models trained with and without role-weighted loss.
We introduce a semantic-aware loss weighting scheme, where each role is as-
signed a fixed importance weight reflecting its potential security impact. For
example, binary-execution and staging-write are considered more critical
than routine operations.

Our role-weighted loss improves convergence speed by emphasizing security-
critical semantic roles and down-weighting routine events during training. Ta-
ble 3 compares the training efficiency with and without role-weighted loss. The
role-weighted model achieves faster convergence, reaching critical loss thresholds
significantly earlier than without role-weighted.

Summary. Preliminary results show that semantic role annotations help distin-
guish attack behaviors through structural patterns and improve model training
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efficiency when used in loss weighting. These findings highlight the potential
of semantic-aware provenance analysis and provide a promising foundation for
future development.

6 Discussion and Future Work

In this work, we introduce a semantic-aware, provenance-based IDS optimized
for edge computing environments. By incorporating semantic role annotation,
this work aims to balance detection fidelity, interpretability, and resource ef-
ficiency. Our current prototype focuses on offline analysis using the CADETS
dataset. The results demonstrate that role-annotated subgraphs exhibit measur-
able structural divergence between benign and attack behavior, validating the
effectiveness of our semantic modeling approach.

Several directions remain open for future exploration: 1) Deploying the pro-
posed IDS on actual edge platforms will allow us to evaluate system behavior
under real workload conditions. This includes assessing runtime performance,
memory usage, and detection latency. 2) Rule-based IDS are lightweight and
interpretable, making them well-suited for constrained edge environments. How-
ever, their reliance on predefined rules limits their ability to detect zero-day
attacks. As part of future work, we plan to integrate lightweight graph neural
network (GNN)-based detection models that can identify anomalous provenance
graphs. To maintain resource efficiency, we will explore GNN architectures such
as GraphSAGE |[2]| or spatio-temporal GNNs with pruning.
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