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Abstract. Rowhammer attacks have emerged as a significant threat to
modern DRAM-based memory systems, leveraging frequent memory ac-
cesses to induce bit flips in adjacent memory cells. This work-in-progress
paper presents an adaptive, many-sided Rowhammer attack utilizing
GPU compute shaders to systematically achieve high-frequency mem-
ory access patterns. Our approach employs statistical distributions to
optimize row targeting and avoid current mitigations. The methodology
involves initializing memory with known patterns, iteratively hammering
victim rows, monitoring for induced errors, and dynamically adjusting
parameters to maximize success rates.

The proposed attack exploits the parallel processing capabilities of GPUs
to accelerate hammering operations, thereby increasing the probabil-
ity of successful bit flips within a constrained timeframe. By leveraging
OpenGL compute shaders, our implementation achieves highly efficient
row hammering with minimal software overhead. Experimental results
on a Raspberry Pi 4 demonstrate that the GPU-based approach attains
a high rate of bit flips compared to traditional CPU-based hammer-
ing, confirming its effectiveness in compromising DRAM integrity. Our
findings align with existing research on microarchitectural attacks in het-
erogeneous systems that highlight the susceptibility of GPUs to security
vulnerabilities. This study contributes to the understanding of GPU-
assisted fault-injection attacks and underscores the need for improved
mitigation strategies in future memory architectures.
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1 Introduction

Modern computing systems increasingly rely on heterogeneous architectures,
where CPUs, GPUs, and other specialized accelerators collaborate to deliver
high-performance processing for numerous applications. While GPUs are widely
known for their exceptional parallel computation capabilities, a growing body
of research indicates that these accelerators can be repurposed for malicious
tasks [13,12,4].
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A notable example is the Rowhammer attack, which exploits physical
properties of Dynamic Random Access Memory (DRAM) cells through frequent
row accesses. DRAM organizes storage cells in a matrix of rows and columns,
grouped into banks. Each DRAM cell consists of a capacitor and an access
transistor, with the capacitor storing a single bit of data as electrical charge.
Due to increasing density in modern DRAM chips, cells are physically closer
together, making them more susceptible to electrical interference. When a row
is accessed, the corresponding wordline is activated, causing a slight electrical
disturbance in neighboring rows. With repeated activations (hammering), this
disturbance can accumulate and discharge capacitors in nearby rows, flipping
their stored values without directly accessing them [7].

In CPU-based scenarios, repeated row activations exploit tight cell placement
to induce charge leakage. However, GPU-based approaches can accelerate this
significantly by leveraging massive parallelism and high memory bandwidth. This
study demonstrates such a GPU-based Rowhammer attack on a Raspberry Pi 4.
For this, we use OpenGL compute shaders that allow general computations to be
performed outside the traditional graphics rendering pipeline. We use statistical
approaches and parallel GPU threads to intensify row hammering and increase
the likelihood of bit flips in DRAM.

This paper makes several distinct contributions to the growing body of re-
search on hardware security attacks:

— Novel GPU-based Rowhammer Implementation: While Frigo et al. [2]
demonstrated microarchitectural attacks accelerated by integrated GPUs
on mobile devices, our work specifically focuses on using OpenGL compute
shaders for Rowhammer attacks on embedded systems like the Raspberry Pi
4, an approach not previously explored in the literature.

— Advanced Statistical Hammering Patterns: We extend the non-uniform
access patterns introduced by Jattke et al. [5] in their BLACKSMITH fuzzer,
adapting these techniques to the GPU context with massively parallel thread
execution for more effective DRAM disturbance.

— Heterogeneous System Security Analysis: Building upon the survey by
Naghibijouybari et al. [12], we provide concrete evidence of cross-component
vulnerabilities in heterogeneous systems, demonstrating how memory attacks
can be launched from the GPU component against system-wide DRAM.

— Practical Embedded Device Vulnerability: While many Rowhammer
studies focus on server or desktop systems, we demonstrate these attacks on
the widely used Raspberry Pi platform, showing that even low-cost embed-
ded devices with integrated GPUs are vulnerable to sophisticated memory
corruption techniques.

— Multi-sided GPU Hammering: We adapt and improve upon the many-
sided hammering technique from TRRespass [3|, implementing it in the con-
text of GPU compute shaders to bypass existing Target Row Refresh (TRR)
mitigations in Low Power Double Data Rate 4 (LPDDR4) memory.

Our work bridges multiple research areas by combining GPU side-channel
techniques [13,4] with advanced Rowhammer methodologies [3,5] to create a
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more powerful attack vector that exploits the inherent parallelism of modern
GPUs.

2 Related Work

Heterogeneous architectures combine CPUs, GPUs, and accelerators in a single
platform for improved computational throughput. Despite performance gains,
this integration broadens the attack surface by exposing shared memory re-
sources and on-chip interconnects to various processes. Recent surveys [12] high-
light that attackers can exploit these shared resources for side-channel leakage,
covert channels, or fault injection.

Rowhammer is a well-documented DRAM vulnerability [7,1,11] where re-
peated access to specific memory rows can induce bit flips in adjacent rows,
leading to potential security breaches. Frigo et al. [3] introduced “TRRespas”, a
method that exploits weaknesses in the TRR mitigation implemented in DDR4
DRAM modules. Their black-box Rowhammer fuzzer revealed that many DDR4
modules remain susceptible to Rowhammer attacks despite TRR defenses, em-
phasizing the need for more robust mitigation strategies.

TRR is a commonly implemented mitigation designed to counter Rowham-
mer attacks by monitoring memory access patterns and refreshing adjacent rows
when a specific row is accessed excessively. However, TRR implementations are
often proprietary and vary across manufacturers, leading to inconsistencies in
effectiveness. Sophisticated attacks, such as TRRespass [3], have demonstrated
the ability to bypass TRR by exploiting its blind spots, such as multi-sided
hammering patterns.

There exists also other mitigation approaches such as Error-Correcting Code
(ECCQC), Increased Refresh Rates and Row Randomization. ECC memory can de-
tect and correct single-bit errors, reducing the impact of bit flips. However, ECC
is not foolproof against multiple simultaneous bit flips. By refreshing DRAM
rows more frequently with increased refresh rates, the likelihood of charge leak-
age causing bit flips is reduced. This approach, however, increases power con-
sumption and may degrade performance. Randomizing the physical-to-logical
row mapping makes it harder for attackers to target specific rows, though this
requires hardware support. In future DRAM designs, emerging technologies,
such as 3D-stacked DRAM or alternative memory architectures, aim to miti-
gate Rowhammer by reducing cell-to-cell interference.

In software-based protection approaches, operating systems can implement
memory allocation strategies to isolate sensitive data from vulnerable regions
or detect abnormal memory access patterns. Konoth et al. proposed ZebRAM
that builds on virtualization extensions in commodity processors to isolate ev-
ery DRAM row that contains data with guard rows to control data placement
[9]. Despite all these mitigations, Rowhammer remains a persistent challenge,
particularly as attackers develop more advanced techniques to exploit hardware
vulnerabilities.
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Concerning GPU side-channel attacks, Naghibijouybari et al. [13] demon-
strated the practicality of this kind of attacks by showing that an OpenGL-
based spy can accurately fingerprint websites, monitor user activities, and infer
keystroke timings. Additionally, they illustrated how a CUDA spy application
could deduce internal parameters of neural network models used by other CUDA
applications, highlighting vulnerabilities in shared GPU environments.

Similarly, Frigo et al. [2| explored the security implications of integrated
GPUs in mobile processors. They revealed that GPUs could accelerate microar-
chitectural attacks, such as side-channel and Rowhammer attacks, even from
JavaScript within browsers. Their work emphasized the necessity for secure GPU
design, especially as GPUs become more integrated into general-purpose com-
puting.

Comparing to recent work based on CPUs such as AMD Zen-based plat-
forms [6] or RISC-V [10], our GPU-based Rowhammer attack does not need to
reverse engineer DRAM addressing function nor to synchronize with the refresh
mechanism of the memory controller to bypass the TRR mitigations. Complex
techniques such as scheduling flush and fence instructions to increase row acti-
vation throughput are replaced by using high-frequency memory access patterns
with GPU compute shaders. We will show in the next section how we use the
key factors such as high thread count, memory bandwidth, compute shaders,
bank-level parallelism, reduced CPU overhead, and randomized access patterns
to amplify Rowhammer attacks on GPUs.

3 Implementation Details

3.1 High-Level Overview

Our implementation aims to maximize DRAM activations from a GPU context.
GPUs are inherently designed for massive parallelism, with thousands of threads
executing simultaneously across multiple cores. This architecture provides a sig-
nificant advantage for Rowhammer attacks compared to CPUs, which typically
have fewer cores and threads. We rely on OpenGL ES 3.1 compute shaders to
issue read operations on targeted rows. This modern GPU support provides
fine-grained control over memory access patterns that enables us to craft highly
optimized hammering loops that maximize DRAM disturbance while avoiding
detection by refresh mechanisms. The code is structured to:

1. Allocate and initialize large GPU-accessible buffers or textures in DRAM;
2. Issue “hammer” operations via compute shaders, which repeatedly read from
chosen memory locations (victim rows);
. Vary row offsets randomly, creating multi-sided hammering patterns;
4. Collect timing and error data via Shader Storage Buffer Objects (SSBOs)
and host readbacks.

w

Figure 1 illustrates the logical workflow of our GPU-based Rowhammer at-
tack implementation, showing the main processing steps and decision points.
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Fig. 1. GPU-based Rowhammer Attack Logical Workflow

3.2 Key Attack Primitives
The following operations are important primitives for the attack.

— Parallel Threads: We dispatch thousands of GPU threads (Fig. 1-(1)),
each performing independent row accesses, thereby significantly increasing
the total number of activations.

— Adaptive Randomization: Inspired by Blacksmith-style pattern fuzzing [5],
we insert random offsets in row accesses (Fig. 1-(5)). This prevents simple
row-refresh heuristics from detecting purely sequential patterns.

— Repeated Reallocation: To achieve broader DRAM coverage, we peri-
odically reallocate textures (Fig. 1-(6)) so the GPU driver maps them to
different physical memory regions.

— SSBO Write-Back to Prevent Optimization: Modern GPU compil-
ers are highly optimized and may eliminate operations deemed unnecessary,
such as repeated memory reads without observable side effects. To ensure
the hammering loop is not optimized away, we accumulate the results of
memory reads into a variable and write it back to a SSBO. This guarantees
that the GPU executes the memory operations as intended, preserving the
effectiveness of the attack.

To ensure that each row of the RGBAS texture corresponds to a single row in
DRAM, we carefully calculated the texture dimensions based on the DRAM row
size and the format of the texture. The Raspberry Pi 4 uses LPDDR4 memory,
where each DRAM row typically has a size of 8KB (8192 bytes). An RGBAS
texture stores 4 bytes per pixel (1 byte for each channel: Red, Green, Blue, and
Alpha). Therefore, the number of pixels per row in the texture must satisfy:

DRAM row size (bytes) 8192

= 2048
Bytes per pixel 4

Pixels per row =

Thus, each row of the texture should contain exactly 2048 pixels to align with
a single DRAM row. The height of the texture can be chosen based on the total
memory allocation required for the attack, ensuring that the texture fits within
the available GPU-accessible DRAM. For example, a texture of size 2048x2048

would occupy:

Total size = Pixels per row x Height x Bytes per pixel = 2048 x2048 x4 = 16 MB
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This size is well within the 4GB LPDDR4 memory of the Raspberry Pi
4, leaving sufficient space for other system operations. By aligning the texture
rows with DRAM rows, we ensure that memory accesses in the compute shader
directly correspond to specific DRAM rows, maximizing the effectiveness of the
Rowhammer attack.

3.3 Compute Shader Implementation Analysis

The compute shader implementation (Listing 1.1) employs several key techniques
to maximize the effectiveness of DRAM hammering.

#version 310 es
layout (local_size_x = 16, local_size_y = 16) in;

// Uniforms controlling iteration count, wictim row, etc.
uniform int uVictimRow, uBankStride, uMaxOffset, ulterations;
uniform uint uSeed;

// DRAM tezture bound as readonly image
layout (rgba8, binding = 0) readonly uniform highp image2D uDRAMTexture;

// SSBO to store partial results (ensures read ops are done)
layout (std430, binding = 0) buffer OutputBuffer { vec4 outDatall; };

uint rand_lcg(inout uint seed) {
seed = seed * 1664525u + 1013904223u;
return seed;

}

void main() {
ivec2 baseCoord = ivecQ(gl_GlobalInvocationID.xy) *x 4;

// Per-thread seed for random offsets

uint localSeed = uSeed
+ uint (gl_GlobalInvocationID.x) * 73856093u
+ uint (gl_GlobalInvocationID.y) * 19349663u;

// Bank-aware offset to stress DRAM interleaving
int bankOffset = (baseCoord.x & 15) * uBankStride;
int bankedX = bankOffset + (baseCoord.x & 511);
vec4 accumulator = vec4(0.0);

// Main hammering loop

for (int i = 0; i < ulteratiomns; i++) {
int offsetl = int(rand_lcg(localSeed) % uint(uMaxOffset));
int offset2 = int(rand_lcg(localSeed) % uint(uMaxOffset));

int rowl = (uVictimRow + offsetl) & (imageSize (uDRAMTexture).y - 1);
int row2 = (uVictimRow - offset2) & (imageSize (uDRAMTexture).y - 1);

ivec2 addrl = ivec2((bankedX + i * 128) & 511, rowl);
ivec2 addr2 = ivec2((bankedX + i * 128 + 256) & 511, row2);

// Repeated read operations
vec4d vall = imageLoad (uDRAMTexture, addrl);
vec4d val2 = imageLoad (uDRAMTexture, addr2);

// Accumulate the results to avoid compiler optimizations
accumulator += (vall + val2);

}

// Write final accumulator to SSBO
uint index = gl_GloballnvocationID.y
* (gl_NumWorkGroups.x * gl_WorkGroupSize.x)
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+ gl_GloballInvocationID.x;
outData[index] = accumulator;

Listing 1.1. Central GPU Compute Shader for Rowhammer Attack

Thread Organization The shader uses a 16x16 thread block configuration
(local_size_x = 16, local_size_y = 16), creating 256 concurrent threads
per work group. Multiple work groups can be dispatched in parallel, achieving
thousands of simultaneous memory operations. Each thread hammers memory
by reading specific DRAM rows in a loop, using random offsets.

Random Offset Generation The Linear Congruential Generator (LCG) func-
tion rand_lcg() creates pseudo-random offsets for each thread:

— Each thread initializes a unique seed based on its global ID (a identifier
unique to each thread) combined with the uniform uSeed value,

— Within the hammering loop, offsetl and offset2 are randomly generated
for each iteration,

— These offsets modify the target row addresses, implementing the adaptive
randomization pattern discussed earlier.

The Hammering Loop The core of the attack is a tight loop that:

— Calculates two different row addresses (rowl and row2) for each iteration,

— Uses bank-aware addressing (bankedX) to ensure hammering affects specific
DRAM banks,

— Performs two image loads (memory reads) per iteration, targeting rows above
and below the victim row,

— Accumulates the loaded values to prevent compiler optimization from elim-
inating the reads.

SSBO Result Collection A SSBO stores the accumulated results:

— The outData buffer receives the final accumulator value from each thread,
— This serves two critical purposes: ensuring memory reads are not optimized
away by the compiler, and allowing the CPU to verify shader execution,

— The (index) scheme ensures each thread writes to a unique buffer location.

This implementation demonstrates how GPUs can be repurposed for memory
attacks through their parallel architecture and direct DRAM access capabilities.
The shader maximizes DRAM row activations by combining thread parallelism
with randomized access patterns, all while avoiding driver or hardware optimiza-
tions that might otherwise reduce hammering effectiveness.
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4 Experimental Setup and Results

4.1 Hardware and Software Environment

Our experiments target a Raspberry Pi 4 featuring a Broadcom BCM2711 SoC
(Quad-core ARM Cortex-A72 CPU), a VideoCore VI GPU with support for
OpenGL ES 3.1 compute shaders, and 4GB of LPDDR4 SDRAM. We run a
Raspbian-based OS, ensuring the necessary graphics drivers for GPU compute.

4.2 Rowhammer Conditions and Reproduction Attempts

By carefully tuning uIterations and launching multiple workgroups, we ap-
proach billions of DRAM accesses per second. The GPU’s parallel nature often
surpasses what is achievable by CPU-based Rowhammer on the same board.
LPDDR4 memory employs built-in refresh cycles and partial vendor-specific
TRR logic. Our multi-sided, randomized approach is designed to elude simplistic
refresh algorithms, consistent with findings from [5].

To choose the victim rows, we randomize a “base” uVictimRow within the
GPU memory space and let the compute shader offset it. This helps cover dif-
ferent physical rows, especially when combined with texture reallocation.

In addition, to confirm that flips are not spurious, the code implements repro-
duction attempts by: i) correcting the flipped bits in the texture; ii) re-running
the same hammer parameters (uIterations,uVictimRow, etc.); and iii) check-
ing if the same bytes flip again, signifying a stable vulnerability in that DRAM
region. These steps ensure flips are truly due to Rowhammer rather than random
DRAM errors or cosmic rays.

4.3 Observed Bit Flips

We have carried out several runs lasting more than 20 hours each and without
interruption in order to observe bit flips. This duration is necessary to bypass
the ECC protection mechanism of the Raspberry Pi. The number of iterations is
5+ 10* for these runs, and each thread performs 2 reads per loop iteration. With
thousands of threads, total memory accesses can reach billions. The number of
successful bit flips has been counted by comparing the original and modified
(current) textures, as shown in Figure 2.

We had on average 1024 bit flips for 5 different runs. More experiments should
be done but from these runs we observe blocks of 32 rows with bit flips, and the
addresses of these rows are continuous. The offset between the address of one
block and the address of the next block is 16384 (2!4). This precise value might
be related to the size of a subdivision of the memory or the DRAM addressing
scheme of the GPU.

It is noted that most flips occur in physically adjacent rows to the hammered
addresses, consistent with classical Rowhammer theory. Some occasional flips,
random outliers, appear in unexpected locations, potentially due to internal row
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bitflips_20250210_183812.log
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Fig. 2. An Extract of Log with Observed Bit Flips

remapping, temperature, or noise factors in DRAM. Many flips can be repro-
duced across multiple runs, indicating stable vulnerabilities in specific DRAM
regions. An attacker could push the victim’s data in these vulnerable locations
using a method called Memory Massaging [8] thus compromising its integrity.

5 Discussion and Conclusion

We have presented in this work-in-progress paper a GPU-based Rowhammer at-
tack on the Raspberry Pi 4 using OpenGL ES compute shaders. By orchestrating
large-scale, parallel DRAM accesses, our approach reliably induces bit flips in
adjacent rows. We showed how randomization of row offsets, repeated reallo-
cation, and a high level of parallelism can overcome naive refresh mechanisms,
offering a new perspective on Rowhammer beyond CPU-centric methods.

Our results confirm that GPU-based Rowhammer is not only feasible but
can be highly effective under certain conditions. Even on a low-cost platform
like the Raspberry Pi 4, the GPU can issue read operations at a rate sufficient
to induce bit flips. This finding has broader implications: laptops, smartphones,
or cloud servers—where GPUs or integrated graphics are widely used—may be
susceptible to a similar approach if memory isolation and refresh strategies are
insufficient. This attack may lead to other security implications and potential at-
tack scenarios such as privilege escalation, denial-of-service or key manipulation.
Indeed, bit flips could corrupt page table entries or other security-critical data
structures, granting higher privileges to the attacker. Even if no direct privilege
escalation occurs, repeated memory corruption could crash processes or the en-
tire system, making it unavailable. In some setups, flipping bits in cryptographic
keys stored in DRAM could weaken or fully compromise encryption.

In order to continue our further research, several potential directions include:

— Adaptive Fuzzing Frameworks: Automating row offset selection, itera-
tion parameters, and temperature conditions to systematically discover the
most vulnerable DRAM regions.
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— Cross-Architecture Validation: Exploring identical GPU-based Rowham-

mer techniques on other SoCs, discrete GPUs, or platforms like x86 with
integrated graphics.

— Advanced Defences: Developing real-time detection within the memory

controller, using hardware performance counters or machine learning to flag
suspicious GPU access patterns.

— Scalable Attacks: Testing whether multi-GPU setups in servers or HPC

environments can amplify Rowhammer effects even further, especially if mul-
tiple accelerators share DRAM banks.

By highlighting the practical viability of GPU-driven Rowhammer, we em-

phasize the pressing need for robust hardware and software mitigations. These
findings serve as a call to action for both the research community and hardware
vendors to address Rowhammer in the context of heterogeneous and parallelized
computing resources.
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