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Abstract. As computing evolves, analyzing system behavior has be-
come as critical as optimizing performance and energy efficiency. Tradi-
tional methods of behavioral analysis often rely on software-level profiling
or predefined signatures, which limit their applicability in dynamic and
resource-constrained environments. This study takes a novel approach
by identifying and characterizing system workloads based on distinct
behavioral patterns, such as memory usage, arithmetic operations, and
control flow. By leveraging hardware performance counters (HPCs) and
power consumption metrics, this work demonstrates how hardware-level
insights can reveal unique operational signatures. These findings high-
light the potential of HPCs and power consumption to enhance the un-
derstanding of system behaviors, offering practical solutions for behavior
identification that could be instrumental in detecting vulnerabilities or
anomalies. The results underscore both the opportunities and challenges
of using these metrics for behavioral analysis in embedded systems.

Keywords: HPC · Power Consumption · Behavior identification.

1 Introduction

Embedded systems are fundamental to modern technology, driving innovations
across industries such as automotive [16], healthcare, and industrial automa-
tion [11]. These systems are defined by their constrained resources, real-time
processing needs, and specialized applications. Understanding and characteriz-
ing the behavior of embedded systems has become crucial for optimizing perfor-
mance, improving reliability, and enhancing security [8].

Behavioral identification [5] in embedded systems involves analyzing how
these systems execute operations like memory accesses, arithmetic computations,
and control flow management [13]. Traditional methods of behavioral analysis
often rely on software-level profiling or static analysis tools. However, these ap-
proaches can introduce significant overhead, lack the granularity needed for de-
tailed insights, or fail to capture the dynamic interplay between hardware and
software. Advanced malware evasion techniques employ sophisticated obfusca-
tion methods to bypass detection, further underscores the limitations of these
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traditional methods [12]. This calls for efficient, hardware-assisted techniques
capable of providing real-time insights into embedded system behaviors [6].

HPCs and power consumption present a promising solution for behavior iden-
tification. HPCs, embedded within modern processors, offer fine-grained insights
into low-level events such as cache hits, branch predictions, and memory accesses,
enabling detailed execution pattern analysis without imposing significant per-
formance overhead. Power consumption, in contrast, provides a holistic view of
system activity, reflecting the aggregate behavior of hardware components during
runtime. By combining these two metrics, it becomes possible to derive a compre-
hensive understanding of embedded system behaviors, particularly in scenarios
involving threats like firmware tampering and unsecured interfaces [15] [17].

In this work, we investigate the potential of (HPCs) and power consumption
metrics for behavioral identification in embedded systems, and compare their
effectiveness in terms of identification efficiency. We focus on operational behav-
iors such as memory management, arithmetic operations, and control logic, as
these metrics enable the characterization of normal system behavior.

Unlike traditional profiling methods, our approach emphasizes non-intrusive,
hardware-based techniques that are efficient and scalable for resource-constrained
environments. The ability to dynamically monitor and interpret system behavior
in real time has broad applications, including vulnerability analysis and malware
or anomaly detection without the need for large sample datasets [9]. The main
contributions of this study are: (1) Demonstrating the feasibility of using HPCs
and power consumption, in conjunction with Artificial Intelligence (AI), as ef-
fective metrics for behavioral analysis; (2) providing a comparative evaluation of
HPCs and power consumption for behavioral recognition in embedded systems.

2 Related Works

HPCs are often debated in terms of their effectiveness for malware detection,
despite their advantage of lower overhead. One limitation is that HPCs cannot
be fully relied upon alone for detecting malware, as they are influenced by both
low-level micro-architecture and software-level activities [19].

Leng et al. [10] suggest that relying on only two HPCs may be sufficient
to ensure system reliability, offering a simpler yet effective approach. Similarly,
Patel et al. [13] utilized HPCs for malware detection by implementing several
machine learning classifiers on FPGA platforms. Their methodology involved
collecting 32 different HPC features and subsequently reducing the dataset to 8
key features. Notably, they found that using the OneR algorithm with only the
branch feature achieved a classification accuracy of 82.5%. This demonstrates
the effectiveness of HPC-based features for malware detection.

Basu et al. [3] investigated impact of HPC interval measurement on model
learning for malware detection. They also used Control Flow Graphs (CFGs) to
assess the probability of matches between two malware samples. Their findings
indicated that the use of instruction and branch HPCs led to a low probability of
exact matches between malware. They concluded that HPCs are not determin-
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istic because of the presence of background processes , meaning that malware
detectors must rely on approximate matching rather than precise identification.

However, Pham et al. [14] utilized electromagnetic field measurements to
detect malware, achieving an accuracy of 99% even when obfuscation techniques
were applied. This underscores the effectiveness of side-channel information in
malware detection. Similarly, Azmoodeh et al. [2] employed power consumption
data to identify patterns and trained a K-Nearest Neighbors (KNN) model,
achieving a detection accuracy of 95.65% in effectively detecting ransomware.

Various malware detection techniques are reviewed by Aslan et al. [1], with
behavior-based detection yielding promising results. Hernandez et al. [7] demon-
strated that using power consumption alone for malware detection is effective,
achieving an F-score of 0.97, compared to relying solely on network data, which
achieved an F-score of 0.94. This is because power-related data are significant.

Bridges et al [4] employed both supervised and unsupervised anomaly de-
tection methods to detect rootkit malware through power consumption, with
the supervised approach showing the best results. Similarly, Yang et al. [18]
used the Gaussian Mixture Model (GMM) on Android devices to detect floating
point attacks based on power consumption, proving its ability to detect malware
or apps such as music and browsers due to its low complexity and efficiency in
approximating arbitrary distributions, achieving 79% for malware detection.

All prior work relies solely on Hardware Performance Counters (HPCs) or
power metrics, often combined with additional methods to enhance detection
techniques. These approaches predominantly focus on malware datasets for train-
ing, which limits their detection capabilities to known malware, making it chal-
lenging to identify zero-day threats.

Our work examines the effectiveness of Hardware Performance Counters
(HPCs) and power consumption metrics in detecting workload behavior, offering
a novel approach that integrates these non-invasive and readily accessible data
sources to identify behavioral anomalies. Unlike prior work, we explore how code
optimization levels impact detection accuracy, enhancing model robustness and
enabling generalization to zero-day threats. By focusing on behavior-based detec-
tion rather than relying on large datasets, our methodology marks a significant
step toward developing a comprehensive, explainable behavior-based detection
framework for embedded systems. As a proof-of-concept, our proposed model
consumes raw data from HPCs or power consumption metrics to analyze and
detect workload behavior. In the future, we aim to refine this method further to
detect anomalies and malicious behavior, with a particular focus on improving
its capacity to identify zero-day threats.

3 Methodology

This study focuses on ARM M4 processors, commonly used in resource-constrained
embedded systems with bare-metal setups to optimize efficiency and minimize
overhead. Using a bare-metal configuration ensures the behavioral characteristics
observed, such as power consumption and HPC metrics, are directly tied to the
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workload, free from variability introduced by operating system-level factors. This
approach not only mirrors real-world deployment scenarios but also provides a
precise analysis of workload behavior. Furthermore, the insights gained form a
foundation for extending the methodology to more complex environments, such
as those involving real-time operating systems.

To validate our hypothesis that power consumption and HPCs can serve
as identifiers of activity within embedded processors, we implemented an ex-
perimental methodology comprising four key steps: (A) execution of benchmark
workloads on embedded processors, (B) dynamic power measurement during pro-
gram execution, (C) HPC instrumentation, and (D) construction of a workload
identifier based on the captured power traces and HPC data.

3.1 Preparation and Execution of Benchmark Workloads

Our first step involved preparing benchmark workloads that cover typical com-
putational tasks on embedded processors: memory assignment, logic operations,
and arithmetic computations—compiled for execution on an ARM Cortex-M4
processor, STM32F303 included as a target board with the Chipwhisperer Lite.
Measurements were conducted in a controlled environment equipped with power
measurement tools to ensure accuracy and repeatability.

Each workload generates power consumption traces and HPC data, influ-
enced by parameters like iteration count and optimization level; benchmarks
were executed with three different optimization levels. As a preliminary bench-
mark we selected four workloads with diverse algorithms to target different com-
putation tasks:

1. Bubble sort: relies on comparison and swap operations, iterating through
pairs of adjacent elements and rearranging them based on their relative val-
ues, leading to repetitive control-dependent branching and memory access.

2. Median Filter: primarily uses sorting and selection operations within a
local window of pixels or data points, requiring frequent neighborhood data
access and sorting to compute the median, making it memory-intensive.

3. Matrix Multiplication: consists of multiplication and addition operations
performed on matrix elements. This involves heavy arithmetic operations and
regular memory access patterns, often optimized through block processing
to improve data locality.

4. Factorial: involves multiplication operations either recursively or iteratively,
with a straightforward arithmetic progression where each element is multi-
plied by its predecessor, requiring minimal memory but heavy arithmetic.

3.2 Power Measurement and Characterization

Power traces are captured during workload execution and aligned with the cor-
responding program execution phases, we correlated specific workload behaviors
with their power consumption profiles, building comprehensive power character-
izations for analysis. As illustrated in Fig. 1, we measured power by compiling
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workloads with the three optimization levels and embedding a trigger within the
code to prompt the oscilloscope ChipWhisperer Lite to begin measurement upon
execution. This approach ensured accurate capture of power consumption solely
during workload execution. The oscilloscope was configured to sample power at
each clock cycle, synchronized with transistor switching events. For workloads
exceeding the oscilloscope’s 24,000-point buffer capacity, we repeated measure-
ments with adjusted parameters to create a sliding window, covering the entire
execution.
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Fig. 1: Power Consumption and HPC Testbed

3.3 HPC Instrumentation and Characterization

We monitored HPCs during program execution to track key events like instruc-
tion execution, memory access, and cache utilization. Synchronizing HPC traces
with workload execution phases allowed us to link workload behaviors to hard-
ware activities. As illustrated in Fig. 1, we measured HPCs periodically using
the ST-LINK/V2 debugger at a sampling frequency of 2 kHz. This method en-
sured no overhead during workload execution. We executed each workload with
three optimization levels (O1, O2, O3), which affected instructions at various
pipeline stages and execution time. These counters are available on Cortex-M3
and Cortex-M4 processors, but not on Cortex-M0. However, our work focuses
exclusively on Cortex-M4.
1. Cycle Counter (CYCCNT): Increments every CPU clock cycle.
2. Load/Store Unit Cycle Counter (LSUCNT): Increments for each ad-

ditional cycle taken by load and store instructions beyond their initial cycle.
3. CPI Cycle Counter (CPICNT): Increments for each extra cycle required

by multi-cycle instructions beyond the first cycle.
4. Exception Overhead Cycle Counter (EXCCNT): Increments on each

cycle spent handling exceptions (entry and exit).
5. Folded-instruction Counter (FOLDCNT): Increments for each folded

instruction, such as zero-cycle instructions like If-Then (IT) instructions and
some NOPs (No Operation).

6. Sleep Counter: Increment on cycles associated with power saving mode.
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3.4 Building the Workload Identifier Model

Finally, in the sake of comparison, we developed a workload and optimization
identifier using two machine learning models, as illustrated in Fig. 2. A Multilayer
Perceptron (MLP) which consists of three layers: an input layer of 25000 point
matching the input feature dimension, two hidden layer with 64 neurons and
32 neurons respectively, and an output layer with 12 neurons (for the 12 class).
ReLU activation functions are applied between layers, and the model is trained
using the Adam optimizer with a learning rate of 0.001 and a 1D Convolutional
Neural Network (CNN) that includes two convolutional layers with a kernel size
of 5, stride of 1, and padding of 2, followed by ReLU activation and max-pooling.
The convolutional output is flattened and fed into two fully connected layers: the
first with 1000 neurons and the second with 12 neurons for classification. Both
models are trained using the Adam optimizer, using minimize cross-entropy loss,
with performance evaluated using validation accuracy. Models were trained on
power consumption traces and HPC data, respectively, to map these metrics to
computational activities within the embedded processor. This approach enables
a non-invasive system capable of identifying workloads based solely on power
consumption profiles or HPC measurements. The classification task assigns 12
class labels, representing four workloads across three optimization levels: Classes
0–2 correspond to Factorial at O1–O3, Classes 3–5 to Bubble Sort at O1–O3,
Classes 6–8 to Matrix Multiplication at O1–O3, and Classes 9–11 to Median
Filter at O1–O3. Finally, we evaluated workload identification without taking in
consideration the opimization level (4 classes) to assess model performance on
workload identifation.

CNN or MLP

4 Outputs

ML Model 12 Outputs

Workloads and Optimization
Identification

Workloads Identification

Or

Counter Matrix

Power Trace

Or

Fig. 2: Our Proposed Model/Detector

4 Results and Discussions

In this section, we analyze the data, discuss the main results, and present the
models proposed in our work. We examine HPCs and power consumption during
workload execution.
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Focusing on Fig.3, where LSU activity is shown, we note that workloads such
as Factorial and Matrix Multiplication do not exhibit high activity during exe-
cution. In contrast, workloads like Bubble Sort and Median Filter present high
activity in the number of loads and stores. In addition, we observed in Fig.4
that the folding instruction counters exhibited high activity during the execu-
tion of the Bubble Sort and Median Filter workloads, whereas they showed low or
negligible activity for the Matrix Multiplication and Factorial workloads. This
discrepancy arises from the fundamental differences in the algorithms control
flow and the resulting interaction with the processor’s instruction folding opti-
mization. Bubble Sort and Median Filter are characterized by frequent condi-
tional branches and data-dependent decision-making processes, which translate
into numerous IT (If-Then) instructions and conditional branches. The ARM
Cortex-M4 processor optimizes these instructions through instruction folding,
effectively reducing execution cycles and improving pipeline efficiency. Conse-
quently, the folding counters register high activity for these workloads. In con-
trast, Matrix Multiplication and Factorial are arithmetic-intensive algorithms
with straightforward and predictable control flows involving simple loops and
minimal branching. Their execution primarily consists of arithmetic operations
with few, if any, foldable instructions. As a result, there are limited opportuni-
ties for the processor to apply instruction folding, leading to zero activity in the
folding counters for these workloads
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Fig. 3: LSU Counter Behavior

Motivated by the promising preliminary findings, we incorporated HPCs into
our study to identify different workloads and their associated optimization levels
on the ARM Cortex-M4 processor. Table 1 presents our experimental results.
Initially, we utilized four HPC counters as inputs to a Multilayer Perceptron
(MLP) model. However, this approach yielded suboptimal results, indicating
that the MLP model struggled to capture the complex patterns within the HPC
data due to its limited ability to extract hierarchical features from raw inputs.
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Fig. 4: Folded-Instruction Counter Behavior

To address this limitation, we employed a Convolutional Neural Network
(CNN) model on HPC data for both workload and optimization identification.
The CNN’s ability to automatically learn spatial hierarchies of features made it a
suitable candidate for handling the intricacies of HPC data. While the HPC data
alone was insufficient for the CNN model to accurately identify both workloads
and optimizations simultaneously—possibly due to the limited granularity since
these counters are only limited to 8-bit and sampling rate inherent in the HPC
measurements—focusing solely on workload identification produced promising
results. The CNN model demonstrated good performance in distinguishing be-
tween different workloads based on HPC data. These findings suggest that HPCs
hold significant potential for workload identification in embedded systems, mo-
tivating their use in our work despite the challenges encountered in broader
optimization identification. These results are obtained using a dataset of 120
HPC samples, divided into 80% for training and 20% for validation.

Recognizing the need for more detailed information to distinguish optimiza-
tion levels, we incorporated power consumption data, which provides cycle-
accurate measurements and reflects the processor’s dynamic behavior more pre-
cisely. As shown in Table 1, feeding the power consumption dataset into the
CNN model yielded significantly better results. For both workload and opti-
mization detection, the CNN was able to identify even subtle changes introduced
by different optimization levels, achieving an accuracy of over 90%. For work-
load detection alone, the results reached 100% accuracy, demonstrating that the
combination of CNN and power consumption data is highly effective for both
workload and optimization detection. These results are obtained using a dataset
of 240 power consumption trace, divided into 80% for training and 20% for
validation.

These results highlight the significant sensitivity of power consumption in
capturing the nuances associated with various optimization applied to work-
loads. The cycle-accurate of the power measurements provides a richer and more
detailed dataset for the CNN to learn from, enabling it to discern patterns that
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were not evident from HPC data alone. This underscores the importance of inte-
grating fine-grained power consumption with neural network models to enhance
the identification and analysis of workloads and their optimization levels.

Table 1: Classification Results Leveraging Power Consumption and HPC Data
Power Consumption Based Detector Validation Accuracy

Proposed Model MLP CNN
Workload and Optimization 55 % 91.67%

Workload Only 70 % 100 %
HPC Based Detector Validation accuracy (4 Counters)

Proposed Model MLP CNN
Workload and Optimization 33 % 41.67 %

Workload Only 50 % 97.22 %

Throughout our research, we encountered several limitations. A major chal-
lenge was the low sampling rate of the debugger, which adversely affected the
learning accuracy of our HPC based models due to insufficient temporal res-
olution in the collected data. In our system, these counters were encoded in
8 bits, causing them to reset to zero after reaching a maximum value of 255.
This overflow limited the precision and reliability of the HPC data, We believe
that even with the inclusion of additional HPCs, this limitation will continue to
hinder the model’s learning.. Employing a cycle-accurate debugger with higher-
resolution counters could improve data collection precision, thereby enhancing
model accuracy.

In contrast, the analysis of power consumption was more straightforward and
yielded clearer insights. At each optimization level and across different work-
loads, we observed distinct impacts on the power consumption patterns. There-
fore, CNN is able to achieve good results, with the ability to accurately detect
both workloads and optimization. The results show how compiler optimizations
can impact detection accuracy, as the CNN is able to detect the workload at
97.22%. In parallel, and for the same workload, the model is not able to de-
tect the workload and its order of optimization, achieving an accuracy of about
41.67%. Previous work proved that HPC systems are good at profiling appli-
cations, while the optimizations induced by the compiler introduce uncertainty,
change the identity of the workload, and mislead the model’s detection, resulting
in incorrect workload identification. However, power consumption is still able to
detect the workload with its different levels of optimization, though at the cost
of a high sampling rate, which should be at least equal to the processor speed.

5 Conclusion and Future work

This paper presented a comparative analysis of HPCs and power consumption
as means for identifying and characterizing the behavior of embedded systems.
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Through a series of experiments on ARM Cortex-M4 processors, we demon-
strated that while HPCs can provide useful low-level insights into workload exe-
cution, their effectiveness is often limited by sampling rate and counter overflow.
In contrast, power consumption measurements—captured at a cycle-accurate
granularity—showed a superior ability to reflect both workload identity and op-
timization levels, achieving classification accuracy of about 91.67%.

Our findings underscore the potential of power consumption as a rich, non-
intrusive behavioral fingerprint in embedded systems. Unlike HPCs, power traces
can be collected externally with minimal interference, making them highly suit-
able for real-time monitoring in resource-constrained environments. Relying on
the accuracy of power consumption, this can lead us to detect any deviation from
the baseline which will help in malware detection in such resource-constrained
embedded systems. Finally, our study opens several promising research avenues
within hardware-assisted security and anomaly detection, particularly in the
context of zero-day malware and firmware manipulation.
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