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Abstract. Ultimately, the safety of systems is contingent on the secu-
rity of the hardware platforms they operate on. To achieve the highest
degree of confidence in the hardware’s security, specifically processors,
we advocate the use of formal methods.
In this paper, we build upon the work by Baty et al., which introduces
a RISC-V processor enhanced with a shadow stack [3]. This processor
is designed in Kôika, a Hardware Description Language embedded into
the Rocq proof assistant, and includes formal security proofs for the im-
plemented shadow stack. We enhance this processor to incorporate sup-
port for traps, various privilege levels, and physical memory protection
(PMP). Additionally, we automate the proofs of the shadow stack by re-
lying on a SMT solver, improving both scalability and maintenance. Our
processor is sufficiently rich to run Zephyr, a small real-time operating
system for embedded processors.

Keywords: Formal verification · Hardware Security.

1 Introduction

The security of systems depends on the security of all layers, from user software
to hardware, through operating systems. For critical systems, we need high con-
fidence in the correctness and security of all these layers, which we can achieve
with the use of formal methods.

Formal verification has already been applied to the security and correctness
of software [10, 5] and operating systems [9, 7]. In this paper, we focus on the
micro-architectural description of hardware.

We build upon the Kôika Hardware Description Language (HDL). This lan-
guage allows to describe a high-level view of a circuit, and to compile it into
Verilog, a more traditional HDL. From there, the standard set of synthesis tools
can be applied to target FPGA boards. The compilation from Kôika to Verilog is
formally verified, meaning that the behaviour of the Verilog circuit is guaranteed
to be equivalent to that of the Kôika circuit.

In previous work, Baty et al. enriched a simple RISC-V processor with a
shadow stack, which is a security mechanism enforcing backward-edge control
flow integrity, i.e. the integrity of return addresses. Together with the implemen-
tation of the shadow stack in the pipeline of the processor, Baty et al. proved
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the correctness of this mechanism. These proofs are however tedious to write
and very fragile to changes in the processor.

In this work, we have two objectives. First, we aim to enrich this RISC-V
processor with more security mechanisms, to make it more realistic and be able
to run a small operating system on it. Second, we want to make the proofs easier
to write and maintain.

Our contributions can be summarized as follows:

– We add support for various mechanisms into the existing processor, which we
now call heRVé. More specifically, we add support for a) Control and Status
Registers (CSR); b) traps (interrupts and exceptions); c) several privilege
levels (M and U); d) and support for PMP (Physical Memory Protection).
With these additions, the heRVé processor can run the Zephyr OS.

– The proofs of the shadow stack are now handed to a SMT solver for better
scalability and maintainability.

The remainder of this article is structured as follows. First, Section 2 gives
some background about the Kôika language, and the RISC-V processor written
in this language. Then, Section 3 presents our modified RISC-V processor, which
we call heRVé, with various security mechanisms. In Section 4, we show that
heRVé can run the Zephyr RTOS. Section 5 explains how we make proofs about
heRVé, by relying on a SMT solver. Finally, Section 6 discusses related work and
Section 7 concludes.

2 Background

2.1 The Kôika language

Kôika [4] is a Hardware Description Language (HDL) embedded in the Rocq
proof assistant. Unlike more traditional HDLs (e.g. Verilog), Kôika features the
notion of atomic rules, that describe different parts of the hardware circuit. Rules
manipulate registers and execute concurrently. Conflicts (e.g. when two rules
attempt to write to the same register simultaneously) are resolved by ordering
the rules in a so-called schedule. Kôika circuits can be compiled into Verilog code,
through the use of a formally verified compiler. Therefore, the semantics of the
compiled Verilog is the same as the semantics of the Kôika circuit. Consequently,
all the properties we prove about Kôika circuits also hold for the Verilog code.

2.2 The Intermediate Representation for Reasoning

Direct proofs on Kôika circuits are impractical (high memory consumption, hard-
to-control computation tactics in Rocq). Hence, Baty et al. introduced an Inter-
mediate Representation for Reasoning (IRR) [3]. This representation basically
unfolds all the rules in the Kôika circuit, and gives the value of each register of
the circuit after one clock cycle. This value is expressed as an expression referring
to the values of registers before this clock cycle. In particular, all the conflict
detection and resolution is encoded into these expressions.
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2.3 A RISC-V processor in Kôika

Kôika’s original authors developed a simple RV32I processor [4]. This processor
is a simple in-order 4-stage processor with a classical Fetch-Decode-Execute-
Writeback pipeline. Baty et al. enhance this processor with a simple shadow
stack: when a call instruction is in the Execute stage of the processor, a copy
of the return address is pushed onto this shadow stack; when a ret instruction
is in the Execute stage, the return address is checked against the shadow stack.
Violations (unmatched ret, shadow stack overflow, return address mismatch)
result in halting the processor (for lack of a better signalling system in this
simple processor). Also, in the absence of shadow stack violation, the processor
runs as it would without the shadow stack. All these properties of the shadow
stack are formally proven, using the compilation of Kôika to IRR and manual
proofs on this IRR.

3 The heRVé processor

We extend the simple RV32I processor from Baty et al. [3] with support for
control and status registers, traps, privilege levels and PMP. All these changes
amount to about 1500 lines of Coq code.

3.1 Control and Status Registers (CSR)

The Control and Status Registers (CSR) are registers introduced in the RISC-
V specification that allow to control the behaviour of the processor. A number
of CSRs (mstatus, mtvec, mcause, mepc) are related to trap handling and are
discussed below. We also have performance counters: mcycle counts the number
of cycles since boot, minstret counts the number of retired instructions.

3.2 Traps

Traps are divided into exceptions – synchronous events triggered by the exe-
cution of an instruction (e.g. illegal instruction, misaligned memory access, or
environment calls) – and interrupts – asynchronous events, generally generated
by external devices or timers.

Timer. We implement a timer in our processor, following SiFive’s CLINT inter-
face, with two registers mtime and mtimecmp mapped in memory at addresses
0x0200bff8 and 0x02004000 respectively. The mtime register is incremented at
a constant rate. As soon as the value in mtime exceeds the value in mtimecmp, a
timer interrupt is raised.

Exceptions. We raise exceptions for the following conditions : ecall/ebreak
instructions for environment calls (system calls) and breakpoints, misaligned
memory accesses (instruction or data), illegal instruction. We also modified the
shadow stack so that a specific exception is raised in case of a violation, instead
of halting the processor. As we will see later, we also raise an exception when a
memory access is forbidden by the PMP.
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Trap Handling Mechanism. As soon as a trap occurs, the pipeline is flushed
and the processor starts handling the trap. The processor saves the execution
context and transfers control to a trap handler in machine mode. This backup
is performed as follows:

1. The program counter (PC) is saved in the mepc (exception program counter)
register;

2. In the mstatus register, bit MIE (Machine Interrupts Enabled) is cleared to
disable interrupts, and its previous value in saved in MPIE (Machine Previous
Interrupts Enabled). Additionally, the current privilege level is saved in the
MPP field;

3. The cause of the trap is stored in the mcause register;
4. The mtval register is updated with additional information, such as the fault-

ing address or instruction, when relevant;
5. The next PC is defined according to the mtvec register, which can specify a

direct or vector trap handler.
6. the processor switches to machine mode

Returning from a Trap. The mret instruction resumes normal execution af-
ter a trap has been processed. This instruction restores the previous privilege
level from mstatus.MPP; re-enables interrupts by restoring mstatus.MIE from
mstatus.MPIE; and sets the PC to the value stored in mepc.

3.3 Privilege levels

The heRVé processor supports two privilege levels, Machine mode (M) and
User mode (U), as defined by the RISC-V privileged architecture [12]. The
Supervisor mode (S) and Hypervisor mode (H) are not yet supported.
However, the basic processor logic and privilege management infrastructure have
been designed to allow the future addition of these modes with minimal changes.

The current privilege level is stored in a micro-architectural register that
is not accessible or modifiable by software through standard register reads or
writes. This design choice is intended to prevent unauthorized privileges escala-
tion and while maintaining simple implementation. Transitions between privilege
levels are controlled by the processor’s trap and exception logic.

Transitions to a lower privilege level (from M-mode to U-mode) are per-
formed by updating the mstatus.MPP (Machine Previous Privilege) field and
then executing the mret (machine return) instruction. All exceptions and traps
are handled in M-mode, ensuring that sensitive operations such as system calls
(ecall) or illegal instruction traps are always processed in the most privileged
context.

The RISC-V specification defines access rights to Control and Status Reg-
isters (CSRs) based on the current privilege level. Each CSR address range is
associated with a minimum required privilege, as summarized in Table 1. For
every CSR read or write, the processor checks that the current privilege level
is sufficient for that CSR access, and raises an IllegalInstruction exception
otherwise.
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Address Range Category Accessible By

0x000–0x0FF User-level CSR User, Machine
0x300–0x3FF Machine-level CSR Machine only
0xC00–0xC1F Read-only counters User, Machine

Table 1. CSR address ranges and required privilege levels.

3.4 PMP

Physical Memory Protection (PMP) is a hardware mechanism in the RISC-
V privileged architecture that enables fine-grained control over memory access
permissions, independently of the virtual memory system. PMP is essential for
enforcing isolation between privilege levels and for supporting secure execution
environments.

PMP Entry Structure and Configuration. Each PMP entry is defined by a con-
figuration byte (pmpcfgN) and an address register (pmpaddrN). The configura-
tion byte encodes the access permissions (Read, Write, Execute), the address-
matching mode (see Table 2), and a lock bit. The address register specifies the
boundary of the protected region. Our implementation supports all 4 modes of
the PMP.

A1:A0 Mode Description Supported

00 OFF Entry disabled Yes
01 TOR Top of Range Yes
10 NA4 Naturally aligned 4-byte region Yes
11 NAPOT Naturally aligned power-of-two region Yes

Table 2. PMP address-matching modes and their support in our implementation.

Bitfield Layout and Semantics The PMP configuration byte (pmpcfgN) is a com-
pact 8-bit register that precisely encodes the access control policy for a memory
region. Its structure is illustrated in Figure 1. Each bit serves a distinct purpose,
enabling fine-grained and hardware-enforced memory protection:

– L (Lock, bit 7): This bit is for establishing a secure execution environment.
When the L bit is set, the corresponding PMP entry becomes immutable:
neither the configuration nor the address register can be modified by any
software, including machine-mode code, until the next hardware reset. Typi-
cally, the L bit is set by trusted boot code after initializing the PMP regions,
thereby guaranteeing that even the most privileged software cannot alter the
memory protection until a full system reboot.
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L

bit 7

0

bit 6

0

bit 5

A1

bit 4

A0

bit 3

X

bit 2

W

bit 1

R

bit 0

Lock (L) Reserved
Address mode (A1:A0) Execute (X)
Write (W) Read (R)

Fig. 1. Format of a PMP configuration byte (pmpcfgX).

– Reserved (bits 6–5): These bits are reserved for future use and must
always be written as zero. Any nonzero value is considered illegal and may
result in unpredictable behavior.

– A1:A0 (bits 4–3): These two bits select the address-matching mode for
the region (see Table 2). The mode determines how the associated address
register(s) define the protected memory range.

– X (Execute, bit 2): This bit controls instruction fetch permissions. If X is
set, code execution (i.e., instruction fetches) is permitted from the protected
region for the relevant privilege level. If X is clear, any attempt to fetch
instructions from the region will result in an instruction fault.

– W (Write, bit 1): This bit governs write access. When W is set, store
operations (writes) to the region are allowed. If W is clear, any attempt to
write data to the region will be blocked, and an exception will be raised.

– R (Read, bit 0): This bit manages read access. If R is set, load operations
(reads) from the region are permitted. If R is clear, any attempt to read data
from the region will be denied, and an exception will be raised.

Addressing and Region Semantics. In TOR mode, each PMP entry i defines a
protected region as the half-open interval [pmpaddri−1 ≪ 2, pmpaddri ≪ 2). The
addresses are shifted left by two bits, enabling 34-bit physical addresses. The
first region always starts at address zero, i.e., [0, pmpaddr0 ≪ 2).

Example Configuration For example, to define two regions:

– Region 0: [0x0000, 0x1FFF] with execute, write, and read permissions (XWR)
– Region 1: [0x2000, 0x2FFF] with read-only permission (R)
– All other addresses: no access restrictions (default M-mode only)

one would set:

– pmpaddr0 = 0x2000
pmp0cfg = 0b00001111 (0x0F) (TOR mode, X/W/R enabled)

– pmpaddr1 = 0x3000
pmp1cfg = 0b00001001 (0x09) (TOR mode, R only)

– pmpaddr2, pmpaddr3 = 0 (unused)
– pmp2cfg = pmp3cfg = 0x00 (entries disabled)

Thus, the 32-bit configuration register pmpcfg0 is 0x0000090F.
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Runtime Enforcement. On every memory access (instruction fetch, load, or
store), the processor needs to determine whether the access is allowed. The
PMP entries are scanned in order of increasing index (priority), and the first
matching region determines the access rights. If the access falls within a region,
the permissions (R/W/X) are checked against the requested operation and the
current privilege level. If the access does not match any region, only M-mode is
allowed to proceed.

The PMP configuration and address registers are mapped in the CSR address
space from 0x3A0 to 0x3EF, and are only writable in M-mode, provided the L
bit is not set.

Validation and Testing. We wrote a number of simple test files, exercising various
types of PMP entries (TOR, NA4, NAPOT) and attempting accesses from both
machine mode and user mode.

4 Running Zephyr

Zephyr is an open-source real-time operating system (RTOS) designed for re-
source constrained embedded systems [13]. It features a modular kernel, a large
device driver infrastructure and a rich set of APIs. Zephyr supports a wide range
of architectures, including RISC-V, and is used as a reference platform for hard-
ware validation. In the following, we adapt Zephyr’s qemu_riscv32 configuration
to our heRVé processor.

UART Integration. A primary adaptation concerned the Universal Asynchronous
Receiver/Transmitter (UART) peripheral. Unlike the standard QEMU RISC-
V platform, which maps its UART at address 0x10000000, heRVé exposes its
UART at 0x40000000. To this end, we have developed a minimal custom UART
driver for Zephyr and customized the device tree. An alias is also defined to
ensure that Zephyr selects this UART as it default system console. This allows
us to use Zephyr’s standard output functions printf and printk.

Timer and Interrupts. Timer management also had to be adapted. In RISC-V’s
standard privileged architecture, the mtime and mtimecmp registers are memory-
mapped. We initially implemented these registers as custom CSRs in heRVé. We
then map these registers in memory at the addresses expected by Zephyr. The
Platform-Level Interrupt Controller (PLIC) is currently disabled in our configu-
ration, as our processor does not yet implement external interrupt support. All
interrupt management is therefore handled via the machine timer.

Instruction Set and Privilege Configuration. HeRVé only implements the RV32I
base integer instruction set, without the M (multiplication/division) or C (com-
pressed) extensions. Zephyr is accordingly configured to generate and execute
only supported instructions.
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Experiments. So far, we run only very simple examples from Zephyr, namely the
hello_world and hello_world_user programs. Although simple, these exam-
ples validate that our processor switches to user mode when necessary, that our
UART driver and our timer work correctly. Attempting to read the timer value
(the mtime register) from user mode results in a PMP load address fault, as one
would have expected.

5 Proving properties of heRVé

We reuse the Intermediate Representation for Reasoning (IRR) from Baty’s
work [2]. However, we completely automate the tedious and fragile work of writ-
ing proofs directly in Rocq. Instead, we translate both the IRR corresponding
to a cycle in the processor, and the property to be verified, into a SMT problem.
We then rely on a SMT solver (in our experiments, Microsoft’s Z3) to prove our
properties; or disprove them, with a counterexample.

Most properties we prove are about a single cycle of the processor: given
hypotheses P on the initial state of registers, prove that after one clock cycle,
the registers are in a state that satisfy Q. The SMT problem is constructed as
follows:

1. we introduce one SMT variable for each register of the processor;
2. we introduce one SMT variable for each variable in the IRR;
3. for each variable in the IRR, we assert that it is equal to the expression

contained in the IRR;
4. we assert our hypotheses (P ) about the initial state of registers;
5. we assert the negation of Q on the final state of registers.

If the conclusion Q is true, the SMT solver should fail to find a model which
satisfy P but not Q, so we expect the SMT solver to answer unsat. If the SMT
solver finds a model, it is a counter-example for our property, which we can use
to either fix the processor, or the property of interest.

We proved again the properties of the shadow stack, as was done by Baty et
al. earlier. The performance of these proofs is reported in Table 3. The proofs are
generally faster to check than the old Rocq proofs, but more importantly they
automatically adapt when changes are made to the processor. This means that
when developing all the extensions described in earlier sections, we did not have
to change the proof itself, but only check that the properties still hold. The SMT
problems contain more than 60000 variables (corresponding to IRR variables),
and as many assertions to associate each variable with its value (an expression
depending on other variables, or initial values of registers at the beginning of
the cycle).

6 Related Work

There are other approaches for formal verification of hardware designs. The
authors of Kôika initially developed the Kami language [6]. This language is also
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Proof Lines in [3] Time in [3] Time now

Shadow Stack underflow 166 70s 6.8s
Shadow Stack overflow 218 150s 1.9s
Shadow Stack violation 812 190s 205s

Table 3. Performance of SMT proofs.

developed in Rocq and can be compiled to Verilog. The language is larger than
Kôika and is not actively maintained anymore. Additionally, Kôika allows to
reason at the cycle-accurate level. Vericert [8] is a High-Level Synthesis (HLS)
tool that is formally verified, i.e. a verified compiler from C to Verilog. In our
case, we want to have fine control over how the hardware circuit will look like,
so we prefer to use a lower-level approach with Kôika. In the CakeML project,
Lööw et al. [11] propose a verified Verilog compiler, using Isabelle/HOL.

Several proof assistants can rely on SMT solvers. Isabelle/HOL and Lean,
for example, interact with SMT solvers natively. For the Rocq proof assistant,
SMTCoq [1] is an attempt at translating a Rocq goal into a SMT problem,
have a SMT solver build a proof for our problem, and translate the SMT proof
back into Rocq. This works well for the original use case (theories of arithmetic,
uninterpreted functions), but is not applicable in our case (theory of bitvectors).

7 Conclusion

We presented heRVé, a RV32I processor with support for CSRs, traps, machine
and user privilege levels and physical memory protection (PMP). This processor
can run the ZephyrOS with all these extensions.

We introduced an hybrid method to perform proofs. While the processor
and its specification are expressed inside the Rocq proof assistant, the proofs
themselves are delegated to SMT solvers for efficiency and maintainability.

In the future, we plan to enhance our processor with new security mechanisms
(e.g. a memory management unit, a cache). We also aim to prove more about
this processor, both for functional – does this processor implement the RISC-V
ISA? – and security properties. For example, we could start by proving that
PMP entries indeed prevent arbitrary memory accesses, and that these entries
cannot be modified even in machine mode once their L bit is set.
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