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Abstract. Dynamic Information Flow Tracking (DIFT) associates meta-
data with memory and registers and enforces propagation rules at run
time to detect violations such as control-flow hijacking, use of uninitial-
ized data, and data-only attacks. This work-in-progress presents a DIFT
framework for AArch64 built on ARM CoreSight debug components. It
combines LLVM-based compiler instrumentation with InSight, an offline
interpreter for CoreSight traces and metadata annotations. The system
supports tag propagation and rule enforcement over instrumented bina-
ries. Preliminary results demonstrate its ability to detect control-flow
violations. Future work includes kernel-level tag initialization via Linux
Security Modules and the development of a hardware co-processor for
online DIFT enforcement.

1 Introduction

Memory safety vulnerabilities are among the most common vulnerabilities found
in binaries, arising from out-of-bound accesses, use of uninitialized resources, or
dereferencing of dangling pointers. These result in memory errors and invalid
pointers, and provide attackers with tools to modify the running program state.
The effects range from information leakage to privilege escalation and arbitrary
code execution in the worst cases. Although Szekeres et al. [20], in their sem-
inal paper “Eternal War on Memory”, present the main types of exploit and
corresponding countermeasures, deploying a complete set of defenses to miti-
gate real-world threats remains complex and incurs unacceptable overheads in
production.

Dynamic Information Flow Tracking (DIFT), also known as Dynamic Taint
Analysis (DTA) [16], is a technique that associates metadata with memory and
registers, propagating it during program execution. A complete implementation
enables the enforcement of strong security guarantees over information flows,
such as spatial memory safety or control-flow integrity [IJ.

This article presents a work-in-progress framework supporting a DIFT system
on the AArch64 architecture, leveraging the CoreSight tracing subsystem to
extract execution traces, extending prior work on the base ARM ISA [21122].
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Built on this framework, we introduce InSight, a CoreSight trace interpreter
that defines tagged memory, propagates tags, and checks tag rules offline. The
framework aims to serve as a blueprint for a coprocessor-based DIFT system
operating at runtime alongside the target program.

The paper is structured as follows: Section [2] outlines the inner workings of
the ARM CoreSight tracing subsystem and the foundations of DIFT systems;
Section [3] details the project setup; Section [] presents initial results from the
framework; and Section [5] discusses planned experiments and components for a
complete DIFT system.

2 Background

2.1 ARM CoreSight

The ARM CoreSight subsystem [0] is a network of components that enables
complete system tracing without interfering with the running application. Each
Processing Unit (PU) (or core) is associated with a tracing unit, namely an Em-
bedded Trace Macrocell (ETM) [6] (the successor to the Program Trace Macrocell
(PTM)). Traces consist of information from program execution captured by the
ETM, hardware events monitored by the Performance Monitor Unit (PMU), and
user-generated software events collected via the Software Trace Monitor (STM)
[43] over a dedicated AXI region. These trace sources are routed through addi-
tional components responsible for delivering trace data to a “trace sink”, either
in RAM or a peripheral. Figure [1| (left) illustrates the CoreSight component
architecture on the UltraScale+ board as an example.
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Fig. 1: Tracing pipeline of CoreSight components on the UltraScale+ board (left).
Overview of the main trace packets (right).

CoreSight traces consist of a succession of interlaced packets from all sources,
as shown in Figure 1| (right). Each packet contains an index (order of arrival)
and an ID (source). The main packets generated by the ETMs associated with
each core are address and atom packets. These provide information on the basic
blocks executed during program execution. An address packet corresponds to the
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last address the program branched or jumped to, while an atom packet contains
between 1-24 atom elements. Each atom element represents a basic block ending
in a control-flow diversion and is marked as either taken (E) or not taken (N). The
combination of address and atom packets generally allows reconstruction of the
program’s control flow. However, atom elements marked as taken may represent
indirect jumps, whose targets are not directly available in the trace and require
binary analysis. If the CoreSight subsystem supports it, a branch-broadcasting
option ensures that an address packet is emitted before every indirect jump,
enabling full control-flow reconstruction without requiring access to the binary.
Exception packets notify system calls and behave similarly to atom E elements.
STM packets consist of master channel selection and user data packets.

2.2 Dynamic Information Flow Tracking

In the 2000s, several a Dynamic Information Flow Tracking (DIFT), as originally
defined by Suh et al. [I9] and also named Dynamic Taint Analysis (DTA), as
presented by Newsome et al. [14] emerged as techniques that leverage metadata
to track information flow within a system. Their application requires three main
components: (1) tag insertion, (2) tag propagation and storage, and (3) tag
checking. Software-based solutions [7I24J9] support the three parts of a DIFT
system by instrumenting the main binary, resulting in flexible solutions at the
cost of a high performance overhead.

Other systems use in-core solutions to store metadata close to the corre-
sponding data [S[I5I12]. Although these systems require adapting the program
or application to the new architectures, they offer better performance by embed-
ding tag propagation within the processor pipeline. Bridging both approaches,
hardware-software co-designed solutions [T0J2T22] integrate program instrumen-
tation with hardware-based tag propagation and checking logic, providing in
additional flexibility.

Complete tracking of information flow enables enforcement of multiple guar-
antees on the running program. Spatial memory safety is enforced by coloring
heap memory chunks, following the approach of ARM MTE. Fine-grained per-
missions can be implemented by checking specific tags before granting read or
write access, effectively providing intra-process isolation. Data-flow isolation, es-
pecially on memory reads and writes, prevents user-supplied input from being
written to sensitive memory regions.

Several challenges remain open problems in implementing DIFT. Among
these, handling implicit flows and conditional instructions is critical, as the tag
associated with a branch condition must be properly propagated throughout the
branch body. Propagating only direct flows can result in false negatives, missing
real attacks, while conservative propagation of all tags causes the “taint explo-
sion” problem identified by Slowinska and Bos [I7JI8|, where aggressive tagging
complicates analysis. Although no definitive solution exists, adjusting tag gran-
ularity and size, combined with accelerated tag checking and propagation, forms
the basis of efficient approaches.
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3 System Design

To support information flow propagation and tracking over AArch64 binaries,
we define regions of shadow memory and shadow registers designated to hold
tags. A tag consists of metadata associated with registers and memory chunks.
For each executed instruction, a set of annotations is defined to propagate tags
within shadow memory. Finally, rules are established on tags to prevent security
breaches at run time. For example, data tagged as insecure must not be used as
a return address, preventing control-flow diversion.
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Fig.2: Overview of the tracing and interpretation framework to support DIFT
using CoreSight on an UltraScale+ board.

To this end, several components are developed and summarized in Figure
First, a set of LLVM backend passes is added to the compilation toolchain to (1)
insert annotations into the binary—instructions for propagating tags in shadow
memory—and (2) embed additional information in the trace through the STM
to determine the addresses of loads and stores using base registers. The Core-
Sight Access Library (CSAL) is extended to properly configure the CoreSight
subsystem for the UltraScale+. After tracing, the packet trace and annotated
binary are passed to InSight, an interpreter that initializes and propagates tags
offline, serving as a blueprint for a future online co-processor.

3.1 Annotations & Instrumentation

Tag propagation rules are defined following the approach initially proposed by
Suh et al. [19]. Instructions are categorized into classes, presented in Table
and use operators @ configurable via dedicated registers, based on prior work
[SIT5IT2]. The table provides an introductory overview of annotations and is not
exhaustive. These operators process source metadata to propagate tags to the
destination, either a register or memory. Instructions that operate on tags are
defined as annotations. The size of tags and the propagation registers, along with
these operators, are critical in determining the DIFT system’s scope, balancing
under-tainting and over-tainting.
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Class Instructions ‘Example ‘Annotations
Arithmetic |ADD, SUB, MULH, SDIV, ... |add Rd, Rn, Rm |Rd < Rn®Rm
ari
Logical AND, ORR, BIC, EOR, ... |and Rd, Rn, Rm |Rd < Rn®Rm
log
Bit manip. |CLS, REV, SXTW SBFM, ... |cls Rd, Rn Rd < Rn
Branches (B, BR, B.cond br Rn PC < Rn
Calls BL, BLR blr Rn LR < PC
PC <~ Rn
Loads LDR, LDP, LDUR, ... ldr Rt, [Rn) Rt < [<Rn>] ®Rn
loa
Stores STR, STP, ... str Rt, [Rnl [<Rn>] < Rt©®Rn
sto
Cond. CCMP, CSEL, CSINC, ... csel Rd, Rn, Rm, [Rd < Rn@®Rm & cond
operations cond s cse
Cond. CBNZ, CNZ, TBNZ, INZ, ... |cbnz Rn, <label> |NZCV < Rn & 2
cbr
branch. PC <« [<PC>+rel] ©Rn
cbr

Table 1: Classification of AArch64 instructions and their tag propagation rules.
Rd is a destination register, Rn, Rm and Rt are arguments. Rn corresponds to the
tag associated with the register. Similarly, [<Rn>] is the tag in memory at the
address contained in Rn. The + operator propagates tags from sources (right)
to destination (left). NZCV and cond refer to flag registers, and rel to a relocable
label address.

Annotations are added in a dedicated binary section (.annot) and linked to
their corresponding basic blocks via entries stored in the basic block table section
(.bbt). These two sections are designed to be loaded and used by the co-processor
alongside the CoreSight trace. An address packet followed by an executed (E)
atom packet triggers propagation of annotations associated with that basic block.
The LLVM instances for basic blocks (MachineBasicBlock) may contain multi-
ple branch or jump instructions within the same MachineBasicBlock. CoreSight
atoms are delimited by control-flow changes, and to keep a one-to-one mapping,
we force all control-flow changes emit a new label in the binary. Two LLVM
passes, applied last in the AArch64 backend, implement this: the first inserts
annotations in text form into the .annot section; the second inserts relocatable
labels linking basic blocks to their annotations in the .bbt section.

Actual register values are unnecessary for tag propagation during arithmetic
or logical instruction execution. However, propagating tags in memory requires
the values of base and potentially offset registers. These register values are em-
bedded in the trace via the STM interface. Once configured, any writes to the
STM’s AXI region are translated into CoreSight STM packets. Practically, a
store of the base register is inserted before each memory access using it, increas-
ing binary size by a factor two at worst. As an optimization, for accesses using
both base and offset registers, the stp (store pair) instruction is employed. To
avoid instrumenting common stack accesses, annotations provide sufficient offset
information (extracted at compile time) allowing the tag propagator to main-
tain the stack pointer value internally, requiring only its initial value at program
start.
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3.2 UltraSight: A Program Tracer on the UltraScale+

The CSAL library is used to configure the CoreSight subsystem on our architec-
ture, providing an interface to access and connect components within the tracing
pipeline. Building on prior work using CSAL to accelerate fuzzing [I3] and de-
fine a hardware CoreSight trace decoder [23], we present UltraSight. It manages
the complete tracing pipeline configuration on the UltraScale+ board as shown
in Figure [I} Trace sources include all four Cortex-A53 cores via their ETMs.
Their trace outputs route to a funnel and are stored in a FIFO before merging
with other sources, STM packets and the unused Cortex-R5 core tracing. The
combined trace set passes to a replicator that copies the output to designated
sinks, either RAM or the board’s programmable logic interface.

The software component manages the traced program’s start and end using
a parent process and ptrace. The STM region for embedding user data into
the trace is initialized in two ways: either via a dedicated library preloaded for
unannotated dynamically linked binaries, or by using an annotated musl-1libc
version to enable DIFT across the entire C standard library and program.

This setup already presents an out-of-the box framework to communicate
with external monitors in the programming logic. To demonstrate this, in the
EU Horizon project "COEMS", Ahishakiye et al.[2] use control-flow tracing
through CoreSight together with instrumentation to check selected memory ac-
cesses for data races. The combined control flow and data trace-events were not
directly verified on the on-SoC FPGA, but rather the FPGA communicates with
an externally attached further UltraScale-based appliance of sufficient capacity
to implement generic stream-based processing (without re-synthesization) via
the TeSSLa specification language by Leucker et al. [TT]. We have successfully
ported their approach for data-race checking to the framework we use here,
where we record control-flow events, most importantly starting new threads via
pthread_create, and use instrumentation to generate data-events with mem-
ory addresses in the STM. We did not implement any verification in hardware,
instead for this proof-of-concept, the decoded trace-data from the FPGA is pro-
cessed offline with the data race-specification in the TeSSLa-interpreter.

3.3 InSight: A CoreSight Parser and Annotation Interpreter

Before developing a run-time hardware co-processor using the programmable
logic part of the board, we implement an offline software trace and annotation
interpreter named InSight. Its primary purpose is to model the hardware coun-
terpart and explore the state space of tag sizes, granularities, propagation rules,
and annotation formats. It defines several parsers for the new binary sections
and generated CoreSight packets.

The annotations section is segmented according to the basic block table. A
map links each basic block to its parsed annotations. The decoded CoreSight
trace is split into packets, retaining only the main four types: address packets
indicating the landing address after a branch or jump; atom packets signaling ex-
ecuted instruction blocks and whether the final control-flow instruction is taken;
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exception packets marking system call execution; and data packets containing
user-sent data embedded in the trace.

The shadow memory handles metadata reads and writes to registers and
memory, updated after each interpreted annotation. Tag check rules are defined
as functions executed after each annotation. The stack pointer is maintained by
the interpreter itself, initialized from the first STM packet and updated through
annotations tied to functions prologues and epilogues. For tag initialization, the
intended goal is a kernel-level mechanism via Linux Security Modules (LSM).
Currently, a system call capture mechanism is used, identifying the syscall by
name and capturing its arguments.

Annotation interpretation proceeds as follows. All STM data packets are
first executed to populate the STM queue with the register values required for
memory accesses. Upon encountering an address packet, the embedded address
is extracted. When an atom packet is found, this address is used to retrieve the
corresponding annotations via the basic block table. Atom elements are then
processed: if the element is E (branch taken), interpretation stops and waits for
the next address packet; if it is N (branch not taken), interpretation continues
by falling through to the next entry in the basic block table and its associated
annotations. Exception packets also use the captured address to interpret the
associated annotations, ending with the system call instruction svec.

4 First Evaluation

4.1 Experimental Setup

The complete framework is deployed on a Xilinx Zynq UltraScale+ MPSoC eval-
uation board (ZCU104). The Linux kernel 6.1.5-xilinx-v2023.1 runs on the
Cortex-A53 cores using petalinux-2023.1, with CoreSight-related configura-
tion options enabled. Additional backend passes are implemented in LLVM ver-
sion 19.1.6. The CSAL library is extended from version 3.1 to configure the trac-
ing pipeline and activate branch broadcasting. Trace decoding uses OpenCSD
version 1.5.6. The standard library is musl-libc version 1.2.5, combined with
LLVM runtime libraries (compiler-rt, libc++/libc++abi, and libunwind). The
musl-libc entry point is modified to invoke an assembly stub that configures the
CoreSight STM, maps its memory into the user process, and transmits the initial
stack pointer. The entire musl-libc is instrumented using the custom toolchain,
with manually inserted annotations for raw assembly files.

4.2 Security Evaluation

Threat model: We assume there are memory safety vulnerabilities (e.g., out-of-
bounds access, use-after-free, uninitialized memory, or type confusion) in victim
user programs and aim to prevent control-flow hijacking, data-only attacks, and
information leakage. We assume the main core is trusted and free from side-
channel attacks.
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// Should NOT be called 0x2167ac <vulnerable>:
void secure_function() { sub sp, sp, #0x20

exit(0); stp x29, x30, [sp, #16]
X mov w0, wzr

add x1, sp, #0x8
mov x2, #0x20
bl 216800 <read>

// Forces return address
// spillage on the stack
__attribute__((noinline))
void force_frame() {

asm, volatile__("");

0 NG AWw N
0N TR W N

©
©

0x2167cc <vulnerable_0>:
1dp x29, x30, [sp, #16]
add sp, sp, #0x20
ret

[
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[
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}

o
o
=
o

-
w
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w

// Overflow of buf

void vulnerable() {
char buf[8];
force_frame();

0x216800 <read>:

-
'S
-
'S

[
o
=
=

svc

[
o
[
o

[
9

read(0, buf, 32);
¥

—
©

19

20 // Passing the payload with the 1 0x2167cc (vulnerable_0)

21 // address of secure_function 2 FP <- [<SP> + 8+Imm(2)]_64 loa SP loa Imm(2)

22 int main() { 3 LR <- [<SP> + 8*Imm(2) + 64]_64 loa SP loa Imm(2)
23 vulnerable(); 4 SP <- SP add Imm(32)

24 return 1; 5 PC <- PC ret LR

25 } 6 END

Listing 1: An example of a control-flow hijack detection using InSight: (a) C
program with stack overflow (left), (b) raw instructions of the program (top
right) and (c) annotations associated with block vulnerable_0 (bottom right).

As a first experiment, InSight is configured to use single-bit tags at word-
level granularity. All tag propagation operations are implemented as logical ORs,
which, in practice, lead to overtainting [I7/I8]. Two enforcement rules are defined
to prevent control-flow hijacking: the program counter (PC) and the link register
(LR or X30) must remain untagged at all times.

A simple stack overflow read()-based program is implemented and instru-
mented alongside the musl-1libc, as shown in Listing [Il The attack performs a
classic stack overflow by reading user input (a - line 17) into the local variable
buf (a - line 15), overwriting the return address stored on the stack. The des-
tination buffer address used by read, located in x1, is visible in the instruction
dump (b - line 5). InSight captures this value when it detects the execution of the
system call instruction sve (b - line 16). Annotations tied to the vulnerable_0
basic block theb propagate the tag associated with the input. The first two an-
notations (¢ - lines 2-3) correspond to the 1dp (load pair) instruction (b - line
10). During interpretation, the tag set for x1 gets propagated to the stack and
within the link register, breaking the tag rules, and halting interpretation.

5 Conclusion & Future Works

This work introduces a practical DIFT framework combining compiler instru-
mentation, runtime tracing, and offline annotation interpretation. InSight, the
software interpreter, enables systematic exploration of tag propagation parame-
ters and validates the feasibility of hardware co-design.
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Current limitations include offline tag initialization and incomplete runtime
support, both of which are targeted in upcoming work. A full performance evalu-
ation of instrumented binaries will follow the extension of instrumentation to the
remaining runtime libraries. Tag initialization will migrate to the kernel through
Linux Security Modules (LSM), extending the task structure with tag metadata
and propagating tags during system calls. Entry points and propagations include
file operations (file_open), socket reads (socket_recvmsg), memory mappings
(file_mmap), and program execution (bprm_check).

On the hardware side, implementing the co-processor requires a CoreSight
trace decoder [23], a DIFT propagation engine, shadow memory, and an anno-
tation processor. The viability of the system depends on the annotation format
and its efficient hardware execution, especially in comparison to in-core or fully
tagged architectures [12/8/15].
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