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Abstract. Virtual machine introspection (VMI) is a class of monitoring
techniques used by malware analysis sandboxes to analyze the behavior
of malware samples. VMI introduces execution pauses that can be de-
tected within the virtualized environment, revealing the usage of a sand-
box. Thus, many sandboxes implement countermeasures to conceal VMI
pauses from the guest However, these countermeasures have limitations
on multi-core guests.

We propose several metrics to characterize the side effects caused by a
VMI monitor in multi-core guests. We introduce a new strategy to con-
ceal VMI pauses in multi-core guests, and assert its performance com-
pared to the regular approaches used by sandboxes. Our results show
that this new strategy improves the stealthiness of VMI pauses on a
multi-core system for some metrics, but it still has shortcomings that
should be addressed in future work.
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1 Introduction

Malware analysis sandboxes can leverage CPU support for machine virtualiza-
tion to stay stealth and securely isolated from malware samples [12]. However,
whereas sandboxes use Virtual Machine Introspection (VMI) [8] to analyze mal-
ware behavior, Hypervisor introspection [16,23,25] allows malware to leverage
side-channels from the virtual machine (VM) perspective (e.g. cache misses, ex-
ecution delays) to detect whether it is being inspected.

Typical examples of execution delays that can thus be observed from inside
the VM are the execution pauses caused by VMI procedures. Such pauses last
long enough to be attributed to VMI activity rather than to usual execution on
top of a hypervisor [25].

To prevent evasive malware from observing VMI pauses, some sandboxes
leverage CPU support for clock virtualization to adjust the virtual clock of
the analysed VM and pretend that the clock is stopped during the whole VMI
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pause [11]. It is even possible to synchronize the clock of a fake network envi-
ronment with the clock of the analysis VM to hide VMI pauses while showing
realistic network performance metrics [6].

Such clock manipulation techniques have to assume that either time-based
evasion techniques do not involve network communications or that the sandbox
runs in a closed environment in which the whole network is controlled [11,19].
These assumptions are different but necessary trade-offs that are adapted to
different analysis constraints [26].

The stealthiness of clock manipulation is significantly more limited in the case
of multi-core VMs [6,13]. A first solution to hide such VMI pauses consists in
independent modifications of the virtual core-local clocks to conceal the pauses.
This unfortunately induces virtual core clocks desynchronizations that can be
detected by malware. Alternatively, the VMI pauses can be concealed by pausing
some virtual cores while the virtual clocks remain unchanged, but malware can
then detect that paused virtual cores execute fewer instructions than the other
ones.

In this paper, we present three contributions to hide VMI pauses in multi-core
analysis VMs:

— We introduce time-related observable phenomena and example algorithms
that allow malware to detect VMI in multi-core VMs.

— We propose a strategy for an analysis sandbox to reduce the ability of mal-
ware to detect VMI in a multi-core VM. Our implementation on Xen is
open-source [2].

— We evaluate the proposed strategy against the observable phenomena intro-
duced and with the VMI plugins of the DRAKVUF analysis sandbox [12].
This evaluation shows the limitations of stealth analysis with the hardware
support in modern CPUs and allows us to suggest research directions to
improve this support.

This paper is organized as follows. In Section 2 we present the threat model
and technical background about VMI. In Section 3 we detail the issue of hid-
ing VMI pauses in multi-core VMs and introduce the observable phenomena
allowing malware to detect VMI. In Section 4 we present a strategy to reduce
the observability of VMI on multi-core VMs. An evaluation of this strategy in
the DRAKVUF sandbox is presented in Section 5. Related work is presented in
Section 6 and Section 7 concludes the paper.

2 Context

Using VMI triggers execution pauses that can be detected by an attacker thanks
to hypervisor introspection. Section 2.1 presents the threat model while Sec-
tion 2.2 details the operation of VMI pauses in 1ibVMI, including in multi-core
VMs settings.
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2.1 Threat model

In this work, we focus solely on detecting the use of VMI-related tools by the
Virtual Machine Monitor (VMM or hypervisor). Our threat model assumes that
the attacker has root and kernel rights in the VM, and has access to high-
resolution timers. However, the attacker has neither access to the host nor to
the VMM, which are assumed to be isolated from the VMs.

We consider the following techniques to be out of scope: the detection of
virtualization, access to co-resident VMs, and access to the host or the VMM.

Moreover, the attacker’s main objective is to remain undetected during the
attack. The attacker will thus prefer improved stealthiness over increased in-
trospection detection accuracy. This may restrict the hypervisor introspection
techniques available to the attacker despite their root and kernel privileges in
the VMs.

2.2 VMI pauses

We now present the general behavior of a VMI program or monitor, including
how it induces execution pauses. Our focus is on 1ibVMI [1, 18], which is one
of the most popular open-source VMI library. A VMI monitor uses 1ibVMI to
access information about the execution of a monitored VM. 1ibVMI interacts
with the VMM to retrieve the relevant information.

1ibVMI enables two types of VMI requests that can eventually trigger execu-
tion pauses. VMI commands are issued immediately to the target VM or virtual
CPU (vCPU) by the VMM. Examples include operations such as pausing a VM
or accessing its memory. VMI events are callbacks that are triggered by spe-
cific actions of the VMs. When such an event occurs, the VMM is configured
to trigger a transition from the guest to the VMM (VM Exit on Intel CPUs).
If required, the vCPU is paused while handling the event. VMI events can be
used to monitor a memory area or the usage of instructions such as MOV to CR3.
A VMI event callback can affect future VMI events, because it is possible to
configure new or existing VMI events from a callback.

In addition, 1ibVMI is compatible with multi-core VMs. VMI events only
occur on individual vCPUs but can occur concurrently on multiple vCPUs. In
1ibVMI, events are processed through a VM-specific ring structure in FIFO order.
Additionally, some VMI commands can affect multiple (usually all) vCPUs, such
as vmi_pause_vm.

3 Usage of VMI on multi-core VMs

Similarly to single-core VMs, VMI pauses can also be detected in multi-core VMs,
although new metrics should be used. Section 3.1 discusses in-VM observable
phenomena resulting from VMI usage on a multi-core VM. To our knowledge,
previous works having studied strategies to conceal the impact of VMI pauses do
not address multi-core VMs [6,13]. These limitations are discussed in Section 3.2
and experimental insight is provided in Section 3.3.



4 Léo Cosseron, Louis Rilling, and Martin Quinson

3.1 Detecting local VMI pauses in a multi-core VM

Many hypervisor introspection strategies depend on an accurate clock source
for detecting inconsistencies induced by VMI pauses. On Intel x86 CPUs, the
most accurate clock source is the TSC (Time Stamp Counter), which is a 64-bit
counter register that continuously increments at a constant, high frequency. In
VMs, the guest TSC is an affine function of the host TSC. It is computed from
the host TSC and two parameters (TSC-offset and TSC-multiplier). The used
formula according to Intel [10] is (>> is the bitwise right shift operator):

TSCguest = (TSC-multiplier x T'SChost) > 48 + TSC-offset

These two parameters are set in the Virtual Machine Control Structure (VMCS).
On standard VMMs such as Xen and KVM, each vCPU has a dedicated VMCS,
enabling independent values of these parameters for each vCPU.

As for single-core VMs, VMI execution pauses can be detected from the
vCPU that was paused by observing gaps in the clock flow of the paused vCPU.
The frequency and duration of these gaps are key metrics to infer the usage of a
VMI tool [25]. In multi-core VMs, VMI pauses may occur on all or only a subset
of vCPUs, making a VMI pattern more difficult to identify using the approaches
from single-core VMs.

From in-VM observable phenomena, we propose two new time-related metrics
to detect the presence of VMI on multi-core VMs. Indeed, VMI usage has two
low-level time-related effects. First, a vCPU in a VMI pause cannot produce
in-VM side effects based on clocks, like writing timestamps in a shared memory.
Second, a paused vCPU cannot produce side effects based on work done, like
writing results of computations in a shared memory.

For clock-based side effects, we propose a timing metric based on the key
property of the guest TSC that it is synchronized across all the vCPUs. A sim-
ple algorithm measures the TSC simultaneously on each vCPU, and stores the
results in a shared array. By repeating this process many times and compar-
ing the difference between the highest and lowest TSC measurements from each
iteration, it is possible to infer the usage of VMI. On a system without VMI,
these differences will usually be very small, with occasional outliers due to a VM
Exit or a NMI (Non-Maskable Interrupt). A VM Exit happens when the VMM
traps the guest to perform a privileged operation, while a NMI is issued by the
hardware and cannot be ignored. To the opposite, the number of outliers likely
increases significantly when VMI is used. Indeed, VMI pauses are often longer
than regular VM Exits, as they they are typically handled in userspace while
most VM Exits are handled directly in the VMM.

For work-done-based side effects, we propose a performance metric that mea-
sures the loss of performance caused by VMI pauses. During a VMI pause, the
vCPU thread is not scheduled, but its clock continues to tick. We measure the
quantity of work that each vCPU can achieve during a given amount of time,
and compare the results. This can be done by incrementing a counter within a
dedicated thread for each vCPU. On a system without VMI, we can expect to
observe similar results for each vCPU since each thread is scheduled for roughly
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the same amount of time. However, if a VMI monitor is active, the paused vCPUs
likely achieve less work than others. By observing a large decrease in performance
or a high disparity between the results of each vCPU, an attacker can detect
the usage of VMI. This approach can be extended to heterogeneous processors
by either comparing only cores with the same specifications or determining the
relative speed of different cores.

In addition to these two low-level metrics, higher-level phenomena can be
observed in the execution environment in the VM. In Linux-based VMs, an
example is the clock stability checking logic of the kernel, which regularly checks
that the currently used clock source (usually the TSC) is synchronized across
cores and runs at a constant speed [3,4].

3.2 Limitations of existing strategies to hide VMI pauses

Previous works have proposed solutions to hide the impact of VMI pauses, but
these solutions are only applicable to either single-core VMs or to VMI pauses
affecting the entire VM (e.g. a VM pause) [6,25]. In the following, we focus on
the TSC clock, as it is the primary clock source on Intel x86 processor. The logic
is also mostly valid for other clock sources. The main strategy is to roll back
the guest TSC, after a VMI pause, to its value before the pause. This strategy
can almost completely hide VMI pauses in single-core VMs. This idea was first
proposed to tackle hypervisor introspection in [25], and implemented in a few
works [6,11]. In the rest of the paper, we call this strategy the Naive approach.

In a multi-core VM, each vCPU has its own TSC counter, TSC-offset and
TSC-multiplier registers. That way, any clock adjustment can be done either
on all vCPUs at once, or only on a subset of vCPUs. After a VMI pause on a
single vCPU, the Naive approach may adjust only the TSC clock of the paused
vCPU. But this will introduce clock-based side-effects, as the TSC clocks will no
longer be synchronized across all vCPUs, as shown on Figure 1. Adjusting the
TSC clocks of all the vCPUs after a VMI pause regardless of if they were paused
will instead introduce work-done-based side effects, as the vCPUs that were not
paused will have more CPU time than the others. In addition, for unpaused
vCPUs, this would create clock rollbacks observable from the TSC clock local to
the vCPU. In Section 3.3, the Naive approach is extended to multi-core VMs by
adjusting the clock of paused vCPUs only and independently from each other.

An appealing approach would be to pause all vCPUs each time a VMI pause
is triggered. Then, by performing a global TSC rollback, the clock would stay
consistent between the vCPUs and there would be no clock-based or work-done-
based side effects observable from within the VM. However, this idea is imprac-
ticable because it goes against the design of VMI tools like 1ibVMI, and it could
interfere with dependencies between VMI events. Furthermore, there could be
concurrent VMI pauses on different vCPUs, while this cannot be handled with
this approach. It would also introduce a very high performance penalty.

Hypervisor introspection will thus always be possible on a multi-core VM,
although it can be made harder by limiting observable work-done and clock
related side effects.
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Fig. 1: ustration of the shortcoming of the Naive single-core strategy to hide
VMI pauses on a VM with 2 vCPUs. The X axis represents host time, the Y
axis virtual time. Both vCPUs clocks are synchronized until @, where vCPU;

is paused by VMI. At , vCPU; is adjusted to hide the duration of the VMI
pause. From this moment on, vCPU; and vCPUs clocks are out of sync.

3.3 Evaluation of the Naive strategy to hide VMI pauses

We now experimentally evaluate how both metrics introduced in 3.1 can detect
in a multi-core setting the Naive approach that is classically used to conceal VMI
pauses on single-core VMs. To that extent, we use two baselines. NoAnalysis
constitutes a classic VM setup with no introspection while Baseline adds a
VMI script to the VM (no attempt is made to conceal the VMI pauses in this
case). We opted for DRAKVUF [12], an open-source Xen sandbox based on the
1ibVMI library. We used the default DRAKVUF configuration, which traces the
execution of the guest operating system. As the guest OS idles and the vCPUs
are running on dedicated CPU cores, DRAKVUF mostly traces the execution
of the metrics scripts.

The goal of evasive malware is to detect the VMI analysis, so a technique to
conceal VMI pauses is effective if the measurement with this technique cannot
be distinguished from the NoAnalysis measurements. The more a concealing
technique differs from NoAnalysis on a given metric, the more detectable it is
with this metric, and thus the less it is effective.

All experiments in this paper are executed on an Intel i7-1165G7 CPU (4.70
GHz max CPU frequency), in the Xen 4.17 VMM, with a Debian 11 guest. The
VM is configured with 8 GB of RAM and 4 vCPUs. Xen was configured to
allocate 4 CPU cores exclusively to the VM, to limit potential noise caused by
the dom0O OS.
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Figure 2 shows the distribution of the results for the clock-based side effects
metric, while the values are detailed in Table 1. Symmetrically, Figure 3 shows
the distribution of the results for the work-done-based side effects metric, while
Table 2 details values.

Time Difference (Max - Min)
Distribution by Configuration

No analysis Baseline Naive
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Fig. 2: Histogram of the distribution of the maximum observed time gap between
vCPUs for for the NoAnalysis, Baseline and Naive approaches, for the clock-
based side effects metric. The difference unit are T'SC ticks, with a logarithmic
scale. For each iteration, we measure the difference between the highest and
lowest TSC timestamps taken by all the vCPUs. We cut values above the 99th
percentile to filter outliers (Caused by NMIs for instance). We observe 3 different
distributions for each approach. With NoAnalysis, the differences between the
measurements of TSC are small, between 1 x 10 and 4 x 10*. With the Baseline
VMI script we observe a first peak around the values of the NoAnalysis, and
a second peak around 2.5 x 10% TSC ticks of difference. This value very likely
corresponds to the average duration of a VMI pause. Finally, with the Naive
approach, we have yet another distribution, which goes up to 7 x 10° TSC ticks
of difference, which is about 2.5 seconds on the Intel i7-1165G7 CPU. This is
because the vCPUs clocks are out of sync, and drift from each other as time
passes.

Table 1: Summary of time differences (Max - Min per measurement) over 10,000
measurements. Unit: TSC ticks. We can see that the values differ by orders
of magnitude between the configurations, so this metric can indeed be used to
discriminate between the NoAnalysis and a tampered multi-core configuration,
even if the Naive approach is used.

Config Min Q1 Median Q3 Max Mean Std

NoAnalysis 9.28x10% 2.59x10* 2.69x10* 2.91x10* 6.06x10° 2.72x10* 1.26x10*
Baseline  4.26x10% 9.95x10% 2.13x10°% 2.38x10° 2.10x107 1.67x10° 1.66x10°
Naive 9.17x107 1.57x10° 3.43x10° 5.24x10° 7.04x10° 3.40%x10° 2.09x10°
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Fig.3: Histogram of the distribution of the maximum observed performance
difference between vCPUs for the NoAnalysis, Baseline and Naive approaches,
for the work-done-based side effects metric. For each iteration, we measure the
difference between the highest and lowest counter value computed by each vCPU.
With NoAnalysis, we observe most difference values are below 2 x 10°. With
the Baseline VMI script, the distribution is slightly shifted to the right, and
has a longer tail, with many values between 2 x 10% and 5 x 109, indicating more
discrepancies in the performance achievable by each vCPU. We observe similar
results with the Naive approach.

Table 2: Summary of performance differences (Max - Min per measurement) over
1,000 measurements, with 10ms per iteration. Unit: N/A. We can see that Base-
line and Naive results are similar. Compared to the NoAnalysis, the standard
deviation and mean are noticeably higher, showing more spread out and overall
larger performance differences between vCPUs in these configurations.

Config Min Q1 Median Q3 Max Mean Std

NoAnalysis 3.89x10% 2.25x10° 4.79x10° 8.69x10° 2.21x10° 5.90x10° 4.52x10°
Baseline 9.73x10* 3.83x10° 6.40x10° 1.04x10° 8.75x10°% 9.72x10° 1.05x10°
Naive 1.11x10% 3.87x10° 5.97x10° 9.96x10° 6.25%x10° 9.25%x10° 9.89x10°

4 Strategy to hide VMI pauses on multi-core VMs

This section discusses a strategy to synchronize the different TSC clocks while
hiding VMI pauses, with the goal of performing better than the Naive approach,
that is minimizing the opportunities for an attacker to observe out of sync clocks.
Section 4.1 introduces our design principle. Section 4.2 details our proposed
Acceleration strategy, which accelerates the clocks of late vCPUs. Section 4.3
presents implementation details on the Xen hypervisor.
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4.1 Design approach

As discussed in Section 3.2, designing a strategy to mitigate time-based hyper-
visor introspection implies a trade-off. Rollbacks of the VM clock are ruled out,
because they would likely introduce execution bugs in guest applications and
kernel services that often assume the clock to be monotonic. Instead, we pro-
pose a strategy that authorizes temporarily desynchronization between vCPUs
during VMI pauses and then progressively resynchronizes the clocks.

The strategy is designed by assuming that VMI pauses concerning only sub-
sets of vCPUs are likely to be short and last a few milliseconds at most before
either ending the pause or having all vCPUs paused by VMI. Thus, we disregard
edge cases such as very long VMI pauses on only a subset of vCPUs, which are
irrelevant for any real-world VMI script.

Another important design choice is that when a vCPU is stopped by a VMI
pause, we let the other vCPUs continue their execution. Doing otherwise could
result in deadlocks when the VMI script expects a VMI pause to occur on mul-
tiple vCPUs.

4.2 Adjusting the execution speed of vCPUs

Algorithm 1 Setup of the TSC-multiplier after a VMI pause. current is the
current vCPU. get_guest_tsc_at provides the T'SC date of a vCPU at a specific
host TSC date, while taking into account the state of the vCPU.

Initialize A
if VMI pause is over then

pause_duration < current.tsc — current.vmexit_tsc
current.tsc_offset < current.tsc_offset — pause_duration
current.synchronized + false
now_current <— current.tsc
now < rdtsc()
target_tsc < 0
for all v € vCPUs # current do
target_tsc < max(target_tsc, get_guest_tsc_at(v,now + A))
end for
tscmultiplier < default multiplier
if target_tsc > now_current then
tscmultiplier < (target_tsc —now_current) X (default multiplier/A);
if tsc_multiplier exceeds 16 bits then
tscmultiplier <— max_multiplier
end if
end if
current.tscmultiplier < tscmultiplier
Update current.tsc_offset so that current.tsc = now_current
Setup a timer to expire at target_tsc
end if
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Algorithm 2 Timer expiration handling.

current.tscmultiplier < default multiplier
current.synchronized < true
tsc_offset + —1
for all v € vCPUs # current do

if v.sychronized then

tsc_offset < v.tsc_offset

end if
end for
if tsc_offset = —1 then

Update current.tsc_offset so that current.tsc is the timer expiration date
else

current.tsc_offset < tsc_offset

end if

Algorithm 3 VMI Pause handling. This algorithm is executed between the VM
Exit that triggered the VMI pause and the actual handling of the VMI pause.

current.vmexit_tsc < current.tsc > Immediately after the VM Exit

current.synchronized < false > Handling of the VMI pause
if current.tscmultiplier # default multiplier then
current.tscmultiplier <— default multiplier
now_current < current.tsc
if now_current > current.vmexit_tsc then
delta_tsc = now_current — current.vmexit_tsc
current.tsc_offset < current.tsc_offset — delta_tsc
else
delta_tsc = current.vmexit_tsc — now_current
current.tsc_offset <— current.tsc_offset 4+ delta_tsc
end if
end if

We propose a new Acceleration strategy to synchronize the TSC clocks of
each vCPU while hiding VMI pauses on each vCPU by taking advantage of the
TSC-multiplier VMCS field. By default, the guest TSC clocks run at the rate
of the host TSC clock. However, by using the TSC-multiplier, it is possible to
accelerate or slow down the guest TSC clock.

With the Acceleration strategy, the synchronization of each TSC clock is
triggered unconditionally when a vCPU resumes from a VMI pause. As depicted
in Figure 4, the main idea is to accelerate the vCPU clock by increasing the
TSC-multiplier field, until it catches up with the most advanced TSC clock.

The Acceleration strategy is implemented within the VMM, between the
code handling the completion of the VMI pause and the resuming of the vCPU.
It begins by locally hiding the vCPU pause, by subtracting the duration of the
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Fig. 4: Nlustration of the Acceleration strategy to hide VMI pauses with 2
vCPUs. The X axis represents host time, the Y axis virtual time. Both vCPUs
clocks are synchronized until @, where vCPUj is paused by VMI. When it

resumes at , its TSC-multiplier is set so that its clock runs faster until @,
when it catches up with vCPUs; and the clocks are synchronized.

pause to the vCPU TSC-offset, similarly to the Naive approach presented in
Section 3.2. The vCPU is then flagged as not synchronized.

The default value of the TSC-multiplier field is 248 50 we have T'S Cguest =
TSChost + TSC-offset. As the TSC-multiplier is a 64 bits field, we can write
down T'SCgyyest = m X T'SChosr + TSC-offset, where m is a 16 bits integer
with a default value of 1. To accelerate the clock, we set m = %, with A the
duration of the synchronization process, T the TSC clock at VMI pause resume
time, and D the targeted TSC clock of the most advanced vCPU at the end of
the synchronization.

The computation of D depends on the status of the most advanced vCPU,
which can be in one of three states: synchronized, paused, or in the synchro-
nization process. In case m exceeds 16 bits, we set it to 2'6 — 1 to avoid an
overflow of the TSC-multiplier field, although it is unlikely to ever happen
with typical VMI pauses duration. The setup of the TSC-multiplier is detailed
in Algorithm 1.

Then, we set up a timer to interrupt the accelerated vCPU once it reaches
the end of the synchronization process. Algorithm 2 presents the handling of the
timer expiration. We check if there is another vCPU which has a synchronized
clock. If there is one, we reset m to 1 and adjust the TSC-offset to match the
one from a synchronized vCPU. In the edge case of a TSC-multiplier equal to
the maximum, this might cause a time jump in the future. Otherwise, if no vCPU
is flagged as synchronized, it means that all others vCPUs are paused by VMI, or
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in the synchronization process. In this case, we reset m to 1 and adjust the TSC-
offset so that T'SCyyest is equal to the end date of the synchronization process.
In both cases, once the timer expires, the vCPU is flagged as synchronized.

Finally, we detail what happens if a vCPU is interrupted due to a VMI
pause in Algorithm 3. The vCPU is flagged as not synchronized anymore. In
case the vCPU was in the synchronization process, we reset m to 1, and adjust
its TSC-offset so that T'SCy,cs: is equal to its value at the beginning of the
VMI pause.

4.3 Implementation on Xen

In this section, we present how we implemented the Acceleration strategy on
the Xen VMM. 1ibVMI supports both the KVM and Xen VMM. We opted for
Xen because 1ibVMI’s support for it is more mature than for KVM. As KVM,
Xen is a mature, open source VMM that is commonly used in computer science
research [12,18,19,21,23]. Complex VMI programs based on 1ibVMI such as the
DRAKVUF sandbox only support Xen.

1ibVMI uses Xen’s VM event system to perform VMI. We identified that
all VMI events are processed by the monitor_traps function, which takes an
argument to flag if the vCPU must be paused or not. That way, we can identify
which VM Exits correspond to a VMI pause, and perform clock adjustments
accordingly. To do so, we take a T'SC timestamp as soon as possible after a VM
Exit.

Moreover, the Acceleration strategy mandates the use of an accurate timer
to interrupt accelerated vCPUs at a precise end-of-synchronization date, when
the accelerated TSC catches up with the most advanced vCPU. We opted for
the VMX Preemption Timer, which is specific to Intel x86 processors. It consists
of a register counter that counts down at a rate proportional to the host TSC
only when the corresponding vCPU is being executed in guest mode. When it
reaches 0, a VM Exit is triggered. It is suited for our purpose because it has a
high accuracy and handles the interruption of vCPUs. Besides, it is not otherwise
used by Xen. It is possible to use other timers, such as Xen’s software timer,
but doing so will likely be detrimental to the accuracy. This could be due to the
timer’s inherent low accuracy, the timer being based on host time rather than
on guest time or having to trigger the VM Exit on the target vCPU from another
hardware core because of lack of control on which hardware core executes the
timer handler at expiration time.

Nothing in our implementation relies on Xen-specific mechanisms, so the
Acceleration strategy should be portable to other VMMs supporting VMI,
such as KVM.

5 Evaluation

This section evaluates the efficiency of the proposed Acceleration strategy. To
that extent, we use the metrics introduced in Section 3.1 to assert if the proposed
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strategy is able to conceal VMI pauses from an attacker performing hypervisor
introspection, and discuss how this strategy performs compared to the other
configurations. We use the same experimental setup as in Section 3.3.

We do not evaluate here the ability of the Acceleration strategy to hide
VMI pauses from time measurements that are local to a single vCPU, because
it is not the focus of this paper. Our implementation is a port of the VMI con-
cealment strategy presented in [6] from KVM to Xen, extended to include the
Acceleration strategy. VMI pause local concealment is enabled in the Accel-
eration configuration.

First, we compare the results of both the performance and timing metrics
between the configurations of NoAnalysis and analysis with the Acceleration
strategy. Figure 5 shows that the Acceleration strategy performs similarly to
the Baseline setup for the performance metric. While the Acceleration only
provides an illusion of continuous time to a paused vCPU, it does not change
the actual CPU time allocated to the VM. Consequently, the CPU time spent in
a VMI pause is stolen from the vCPU, similarly to the Baseline configuration.
This leads to more performance differences between each vCPU over a fixed
period of time. These differences can be caused by either a subset of paused
vCPUs having less available CPU time, or by the vCPU monitoring the duration
of the measurement being paused, which gives more time to the other vCPUs.

Next, Figure 6 shows that the Acceleration strategy performs differently
from both NoAnalysis and Baseline configurations for the timing metric. Ac-
cording to the design of the Acceleration strategy, we must allow out-of-sync
vCPUs to run concurrently. Thus, as expected, we can observe timing differences
across concurrent vCPUs two order of magnitudes greater than in the NoAnaly-
sis configuration, so the usage of VMI could still be detected with a well chosen
threshold.

We also observe that the median difference value with the Acceleration
strategy is 2 times lower than the one from the Baseline scenario. This im-
provement can be explained by the fact that accelerating the TSC clock can
partially conceal the duration of the VMI pause before the TSC timestamp is
taken by the metric script. By adjusting the duration of A (synchronization
process duration) in the TSC-multiplier computation, it could be possible to
conceal this pause duration even more, although reducing A too much would
make the strategy nearly identical to Baseline.

Another observation is that the observable drift between T'SC clocks is much
lower than that from the Naive approach. Indeed, while the clock drift grows over
time in the Naive approach (see Figure 6), the drift is bounded by the duration
of a VMI pause with the Acceleration strategy. It makes Acceleration more
stealthy regarding this metric.

Finally, we assess the stealthiness of the strategy against high-level time-
based phenomena by checking the behavior of the Linux kernel clocksource
watchdog [4]. As introduced in Section 3.1, Linux provides a watchdog kernel
thread that can assess the TSC stability. This watchdog performs time mea-
surements with the TSC, and compares the results to an alternate clock source,
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Fig.5: Histogram of the distribution of the maximum observed performance
difference between vCPUs for the Acceleration, NoAnalysis, Baseline and
Naive configurations. We can see that the Acceleration strategy results are
close the Baseline and Naive results, and thus are still noticeably different
from the NoAnalysis. This can be explained by the fact that the Acceleration
strategy only accelerates the TSC clock and not the actual CPU speed. The
CPU time spent in a VMI pause is not compensated by this strategy.

usually the HPET, considered to be less accurate but more stable. If there is a
noticeable drift between both clocksources, the TSC is flagged as unstable and
the Linux kernel switches to a more stable clocksource such as the HPET. The
threshold to mark the clocksource as unstable is usually rather large, typically
in tens of milliseconds. Furthermore, the watchdog also checks if the clocksource
remains synchronized across all CPUs [3]. To do so, it performs three clock mea-
surements. A clock measurement is done on a tested vCPU between two mea-
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Fig. 6: Histogram of the distribution of the maximum observed time gap between
vCPUs for the Acceleration, NoAnalysis, Baseline and Naive configurations.
The differences unit are TSC ticks. We cut values above the 99th percentile to
filter outliers (caused by NMIs for instance). As expected, the Acceleration
strategy values are far from the NoAnalysis configuration, because the strategy
allows out of sync vCPUs to run concurrently. Nevertheless, the drift between
the TSC clocks of each vCPU is much more limited than the Naive approach,
with most differences values below 3 x 10° (About 1ms of drift on the Intel
i7-1165G7 CPU).

surements on the current vCPU. It then asserts that the three measurements
are in order, otherwise the vCPUs are flagged as out of sync and the clocksource
marked as unstable.

We configured the guest OS to activate the watchdog, and summarized the
results in Table 3 after a short run of DRAKVUF (except for NoAnalysis). A
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Table 3: Summary of Linux TSC clocksource Watchdog behavior under differ-

ent setups.
Setup Watchdog Behavior
NoAnalysis |Not triggered
Baseline Not triggered
Naive Triggered (Clock skew too large compared to HPET)
Acceleration|Triggered (CPU clocks out of sync)

first observation is that the watchdog is not triggered in the Baseline scenario,
because the average duration of VMI pauses is lower than the clock skew thresh-
old of the watchdog. We can see that the watchdog is triggered both for the
Naive and Acceleration approach, although for different reasons. Note that it
cannot be ruled out that the watchdog could be triggered by each configuration
for the reported reason only. Thus, both approaches introduce side-effects to the
virtual TSC clocks that can be detected from the Linux kernel.

Table 4: Summary of VMI detection techniques on a multi-core VM. v: Unaf-

fected; X: Affected; ~: Depends on the detection script (see footnotes).
Detection technique NoAnalysis|Baseline|Naive|Acceleration
Local to a single vCPU time gaps v X v v
Performance difference between vCPUs v X X X
Clock synchronization between vCPUs v 3 X 4
TSC clock kernel watchdog v v X X

As summarized in Table 4, these results show shortcomings of the Accelera-
tion vCPU synchronization strategy, although this strategy offers improvements
compared to the Naive and Baseline approaches in terms of stealthiness.

6 Related work

6.1 Hypervisor introspection

It is a well known problem that VMI pauses can be exploited to perform hy-
pervisor introspection [6, 16, 17,23, 25], and many countermeasures have been
studied [6,7,11,13,24]. However, the proposed countermeasures are either lim-
ited to single-core VMs [6], or disregard new timing attacks introduced by the
countermeasure’s side effects when used on multi-core VMs [11].

3 The clocks are synchronized, but concurrent measurements can be affected by VMI
pauses. The observable delay is bounded by the duration of a VMI pause.
4 The clocks are out of sync, but the maximum difference is bounded by the strategy.
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Countermeasures that introduce alternative virtual clocks have the same lim-
itations. For example, StopWatch [13] proposes replacing the clock with a vir-
tual clock that counts the number of instructions executed in the VM. The
authors explain that their design is incompatible with multi-core VMs because
the scheduling of instructions across all cores is non-deterministic.

Approaches that skew the clock by adding randomized delay or degrading its
resolution [15,24] can be extended to multi-core VMs if the clock adjustments
are well-balanced across all cores. However, these methods introduce undesirable
side effects and the degraded timer resolution may still be sufficient to detect
VMI pauses.

In [23], the authors mention that a resilient strategy for performing hyper-
visor introspection in a multi-threaded environment is to use parallel loops that
count the number of iterations. This reuses an approach first proposed to de-
tect the usage of virtualization on a multi-core system [22]. We used a similar
method for the work-done-based metric. In [14], the authors highlight multiple
side channels to detect the presence of a sandbox in multi-core environments,
mostly related to the scheduling of virtual cores. In this paper, we mitigated
most of these attacks by properly dedicating a CPU core to each vCPU.

Many sandboxes are still configured as single-core VMs [5]. Limiting sand-
boxes to single-core configurations has been discussed [14], but in addition to
the large performance penalty, this makes it easy for evasive malware to detect
such sandboxes because most systems, even virtualized, are multi-core [14,17].

6.2 Time dilation

The strategy we proposed in this work to synchronize the vCPUs clocks is sim-
ilar to time dilation [9] techniques. Time dilation involves scaling the rate at
which time and system resources run by a constant factor. In TimeSync [21],
this constant factor is updated regularly to synchronize a VM with a network
simulator. In this work, we also use a dynamic factor to modify the virtual clock
speed. However, TimeSync only slows down virtual time, so that the network
simulator running its nominal speed can keep up with the execution of the VMs.
To produce the opposite effect, distem [20], a network emulation tool, can throt-
tle some CPU cores to create the illusion to the others that they can achieve
better performance than in reality. In this paper, we accelerate the clock speed to
produce an effect similar to distem’s, but without introducing CPU throttling.

7 Conclusion and future work

In this paper, we introduced two new metrics to characterize the usage of VMI
on a multi-core VM. We have shown that both work-done-based and clock-based
side effects occur after a VMI pause, and can be observable by an attacker within
the VM. Furthermore, the metrics classically used to detect the usage of VMI
on single-core VM are also applicable in multi-core settings.
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We proposed a new VMI pause concealing strategy named Acceleration
that takes advantage of Intel’s virtualization of the TSC clock source. When
evaluated in multi-core VMs, this strategy outperforms the ones used in current
sandboxes for some metrics, but still has numerous shortcomings, especially re-
garding work-done based side effects, as they are not taken into account in the
strategy design.

As future work, we plan to conduct a more thorough evaluation of the impact
of each DRAKVUF plugin on each studied metric. This will require adjusting the
workload in the guest VM, in order to significantly stimulate most DRAKVUF
plugins.

A Dbetter strategy than Acceleration would have to take into account the
CPU time in addition to the clock time, in order to better conceal VMI pauses
across all cores. This could be achieved by balancing the runtime of each vCPU
of a VM over a certain period of time. Another idea similar to the Acceler-—
ation strategy would be to control the CPU frequency of each vCPU core, to
balance the average CPU frequency despite VMI pauses. However, without spe-
cific hardware support, this would likely require patching the guest OS, which
would degrade the stealthiness of the approach.

Hardware extensions to better control the vCPUs clocks and speed from the
VMM would help implementing flexible strategies to reduce observable time-
based side-effects of VMI in multi-core VMs. Similarly to the VMX preemption
timer, such extensions would likely be the most helpful if their effect is enabled
only while the CPU is in guest mode. For instance, having guest TSC clocks
that stop running on a VM-Exit would make VMI hiding simpler (no need
to measure the VMI pause durations) and thus more accurate. Similarly, such
extensions would allow the VMM to slow down a vCPU without intervention of
the guest OS and keeping the guest TSC running at a speed looking constant
from the guest kernel point of view on the vCPU.
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