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Abstract. Cyber threats are increasing on a continuous basis, and the
Internet of Things (IoT) and embedded devices are also increasingly
exposed to attackers. Given the critical nature of these devices in In-
dustrial Control Systems (ICS), the implementation of an Intrusion De-
tection System (IDS) is necessary. In particular, current researches fo-
cus on Host-Intrusion Detection Systems (H-IDS) which leverage signals
from the device to detect attacks and intrusions before their impacts
become devastating. This paper presents an H-IDS solution that relies
on Hardware Performance Counters (HPC) and Machine Learning (ML)
anomaly detection to raise alarms when an attack is detected on an em-
bedded device. The proposed solution collects HPCs at the kernel level
of the device and uses a remote computer to extract statistical features
from the HPC values, then makes a decision with a ML model. An exper-
imental platform simulating an Industrial Control System is presented
with a simulated hydroelectric physical process and a hardware emula-
tion of the Programmable Logic Controller managing sensors and actua-
tors logic. The platform also contains 6 typical attacks that often target
embedded devices, such as a ransomware, flooding on a communication
protocol, SSH bruteforce, malicious data transfers and intensive CPU
resources. This setup enables the evaluation of our H-IDS solution under
both normal and malicious conditions. Results show that our solution
has low CPU and memory footprint on the embedded device and is able
to detect critical attacks without raising false alarm.

Keywords: HPCs, machine learning, intrusion detection system, em-
bedded systems, cybersecurity

1 Introduction

As the number of cyberattacks continues to rise, especially in embedded systems,
the exclusive use of traditional preventative defences such as root of trust, mem-
ory protection or access protection is rarely sufficient. Modern security strategies
increasingly integrate Intrusion Detection Systems (IDS) as a complementary
tool to detect, in real time, any abnormal behavior that may indicate a com-
promise in the system. In particular, Host-based Intrusion Detection Systems
(H-IDS) have shown considerable promise due to their ability to monitor in-
ternal activities during runtime in order to provide fine-grained analysis of the
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system behavior.

Unlike network-based IDS (N-IDS), which monitor network traffic to detect
a compromise, H-IDS are deployed directly on the host to detect suspicious or
unauthorized behavior. H-IDS can be used as a complement of N-IDS to focus on
a specific device and to allow the detection of cyberattacks targeting the internal
behavior of the device without altering its network interactions. Two approaches
are mainly proposed for H-IDS [28]. Signature-based Detection method in-
volves identifying known patterns of malicious activity by comparing system
information such as byte codes, text strings or instruction sequences with signa-
tures of known attacks stored in their databases. While effective against known
threats, this kind of solution is limited in detecting new, modified or obfuscated
attack vectors. Anomaly-based Detection approach establishes a baseline of
normal system behavior and identifies deviations from this reference as potential
cyberattacks. By dynamically analyzing the internal system state using internal
signals such as log files, system calls, resource usage or even hardware-level mea-
surements, an anomaly-based H-IDS provides unique visibility into the execution
of malicious softwares on the target and can detect most attacks such as privi-
lege escalation or code injection. It is particularly suitable for detecting zero-day
attacks based on unknown vulnerabilities. A significant challenge in anomaly-
based detection is minimizing false alerts while accurately identifying a majority
of true threats.
For H-IDS, one emerging reliable data source is Hardware Performance Coun-
ters (HPCs). Available in most modern processors (such as Intel, AMD, ARM,
RISC-V), HPC registers can be used to measure the number of occurrences of
hardware units usage within the processor core. They provide information about
the low-level behavior of the processor and count events during process execution
related to instructions (e.g. instruction retired, CPU cycles), memory accesses
(e.g. cache hits or misses, main memory hits or misses) and the execution be-
havior on the CPU pipeline, among others. Although modern processors may
support monitoring dozens or even hundreds of such events (e.g., 84 on ARM
Cortex-A72, 62 on Cortex-A53), a key hardware limitation is that only a lim-
ited number (typically between 2 and 8) can be monitored simultaneously as
only a limited number of CPU registers are allocated for HPC monitoring. This
limitation requires a careful selection of HPC.

Originally designed for performance profiling and debugging, HPCs have been
leveraged in recent years for security purposes, particularly for anomaly detec-
tion. Some studies demonstrated the efficiency of HPCs in detecting microar-
chitectural attacks [21,26,25,20], control flow hijacking attacks [12,35,38,10,24],
rootkits [34,30], malwares [27,29,15,19] and some specific malwares types such
as ransomwares [23,37,8,36] or DDoS [22]. H-IDS solution based on HPCs have
been criticized because of the non determinism of HPC registers [11], however
they are suited for embedded systems, such as Programmable Logic Controllers
(PLC) or Industrial IoT (I-IoT) gateways, where the normal behavior is usually
deterministic, not too complex and well defined.
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Contributions: In this paper, we provide an innovative solution leveraging HPCs
for H-IDS on embedded systems. Our contributions are as follows:

1. We present a novel H-IDS for embedded systems, using HPCs to detect
malicious behavior in an embedded device. Our approach combines statistical
features extraction with a reconstruction-based AI model.

2. We implement a complete and operational prototype on an ARM-based em-
bedded device integrating custom kernel module for HPC extraction and
offloading the anomaly detection process to a remote server.

3. We design a realistic hardware-in-the-loop experimental platform comprising
embedded systems (PLC and I-IoT gateway) that are representative of an
hydroelectric industrial control system. This testbed allows the execution of
both benign and malicious behaviors and serves for the dataset generation.
We also define and implement a representative set of attacks commonly
targeting embedded systems.

4. We thoroughly evaluate the performance overhead introduced by our solution
by analysing its impact on the CPU usage, the memory consumption, the
network traffic and the inference duration.

Outline: The rest of the paper is organized as follows. Section 2 provides a
detailed description of the complete solution and its implementation. Section 3
then focus on describing the methodology used to identify the best HPCs, the
extraction of features and the machine learning model for anomaly detection.
Section 4 introduces a dedicated tested with different malware behaviors and
evaluates the solution. Section 5 reviews the state-of-the-art of H-IDS based on
HPCs for embedded systems. Finally, Section 6 concludes with a summary and
future directions.

2 Proposed solution

As illustrated in Figure 1, the proposed solution described in this section is
a countermeasure designed to monitor and detect abnormal behaviors in an
embedded device using HPCs. It is based on a centralized architecture, where
the storage and analysis of the raw data extracted from all embedded devices
is handled on a remote server ensuring easier management and scalability. The
target device is equipped with a kernel module and a dedicated application
to extract HPC data in real-time, while the remote server is responsible for
analyzing these data, calculating anomaly scores through the machine learning
(ML) model, and displaying the results via a comprehensive dashboard.

2.1 Embedded solution

The target device integrates the two main components required for HPC extrac-
tion and transmission: a kernel module and a user-space application.

The kernel module is designed to interact directly with the registers of the
Hardware Performance Counters to periodically extract low-level statistics in
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Fig. 1. Architecture of the solution

each core of the processor using assembly code. For each specific counter, its
global value is obtained by summing the measurements from all cores. By read-
ing these counter values, the kernel module captures real-time data about the
system’s resources usage, thus enabling an understanding of its hardware behav-
ior. Compared to a user-space application for HPC extraction, the kernel-level
extraction mechanism limits the impact of system load and scheduling for real-
time monitoring and allows us to collect HPC raw values at 100Hz (every 10
ms). We chose 100Hz as a good trade-off between a sufficiently high sampling
rate and a low overhead induced by the extraction.

The user space application aggregates the raw data, formats them and pre-
pares them for a transmission to the centralized remote server. The application
communicates with the kernel module through Netlink, a communication pro-
tocol to exchange data between kernel and user space through a low latency
channel. The processed data are sent to the centralized served through MQTT
(Message Queuing Telemetry Transport), a lightweight protocol allowing com-
munications with limited bandwidth.

2.2 Remote server: data analysis and client application

The function of the remote server is to receive, analyze and visualize data trans-
mitted from the embedded device. The client application is at the core of this
component, which analyzes the incoming raw HPC data, preprocesses them to
compute statistical features and finally calculates the anomaly scores using the
trained ML model. These algorithms are designed to detect subtle deviations in
the target system’s behavior, which may indicate a malfunction or a potential
security threat. A dashboard also allows to visualize both the detection results
(anomaly scores) and HPC values.

The server’s architecture relies on a network of Docker containers deployed
on the client machine to provide a modular and scalable environment and facil-
itate the setup of the solution. The components deployed in each container are
described below:
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– to facilitate the communication between the embedded devices(s) and the re-
mote server, the system is based on MQTT protocol. The Mosquitto MQTT
broker acts as an intermediary to collect published messages from multiple
devices and transmits them to their subscribers.

– the Node-RED server subscribes to MQTT services and process incoming
data packets from embedded devices. It parses these data packets into indi-
vidual HPC register values in order to write them in an InfluxDB database
for further analysis.

– the client application performs the computation of statistical features, com-
putes the anomaly score with the ML model and publishes it on the MQTT
channel.

– InfluxDB is a time-series database and serves as a central repository for
HPC raw values and the calculated anomaly scores, providing an easy-to-
query backend for data analysis or display.

– A Grafana dashboard is used to visualize the anomaly scores computed
by the ML model and sorted in the InfluxDB database.

3 Anomaly detection methodology

An overview of the methodology is described in Figure 2. First, relevant HPCs
were selected and their signals were preprocessed. Then, on those preprocessed
signals, features were computed on sliding time windows and used as inputs for
the ML anomaly detection model.

Fig. 2. Overall methodology pipeline

3.1 HPCs selection and preprocessing

From all the HPCs available on a processor, only a limited number (let say m)
can be monitored concurrently. A first step of HPC selection was thus required
to select these m HPCs. Our selection method relied on mutual information [14].
Mutual information between two random variables is a measure from the infor-
mation theory that quantifies the dependency between them. A higher mutual
information value represents higher dependency.
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To select the best m HPCs, several datasets were generated (see Sections
4.1 and 4.2), each comprising m HPCs with HPC sets differing across datasets,
allowing to have recordings for all available HPCs. Based on these recordings, the
mutual information between each HPC and the ground-truth label (0 for benign
and 1 for an attack) was computed with a non-parametric method relying on
entropy estimation from k-nearest neighbors [17]. This approach gave us the
value of mutual information for all HPCs available on the processor. We finally
selected the m non-correlated HPCs with the highest mutual information value
and a final dataset with this set of HPCs was generated and used for the rest of
the study. The corresponding signals were then preprocessed with two additional
steps :

– resampling : the signals were resampled to match the 100 Hz sampling fre-
quency of the HPC extraction. The missing values induced by the resampling
were filled with the value following the gap evenly distributed on it. This step
is necessary to ensure a constant time gap between consecutive values for
correct features computation, and to ensure that no accumulation of HPC
values occurs if some time slots were missing.

– smoothing: Exponentially-Weighted Moving Average (EWMA) technique was
applied on the signals to smooth them and remove noise. The weighting
parameter was arbitrarily set to 2

9 (corresponding to a span of 8 for the
filtering).

These preprocessed signals were used for the next steps of features compu-
tation and anomaly detection model.

3.2 Features computation

After selecting the HPCs and preprocessing the signals, a set of statistical fea-
tures was computed. For each HPC, a sliding window of 1 second (i.e. 100 mea-
surements) was moved along the signals and features were computed on each
window. On each window, and for each HPC, two signals were considered for
features computation :

– raw signal : HPC signal after the preprocessing step
– derivative signal : derivative of the HPC signal, computed using the second

order central differences

On both the raw signal and its derivative, for each time window and each
HPC, the following features were computed : mean, standard deviation, mini-
mum, median, maximum, root mean square, median absolute deviation from the
median, kurtosis, skewness and coefficient of variation.

In total, on each time window, 20 × m features were computed (10 on the
signal and 10 on its derivative for each of m HPC) to represent the trend and the
variation of the signals and their derivative and to capture distribution informa-
tion over 1 second time windows [13]. Computed features were then scaled with
a Min-max scaling to ensure they were all in comparable ranges before being fed
to the ML model.
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3.3 ML anomaly detection model

For anomaly detection we chose to use a one-class anomaly detection model
based on machine learning. The anomaly detection model was trained only on
the features from the normal behavior of the system and any deviation from this
behavior should be detected as an anomaly.
Our method was based on a reconstruction method with an autoencoder (AE)
and is described in Figure 3.

Fig. 3. Reconstruction-based anomaly detection with an autoencoder (AE) and a
threshold τ

An autoencoder is a neural network architecture whose aim is to reconstruct
the input (mimic the identity function) from a compression (or latent vector) of
the input. After training, the reconstruction error of x, r(x), was computed as
the L2-distance between x and its reconstruction by the autoencoder.

The autoencoder was trained to reconstruct data from the normal behavior
in the training set. Therefore a data not coming from the training distribution
would be poorly reconstructed with a high reconstruction error.
A soft-decision anomaly score s was computed with the sigmoid function σ and
the relative difference between the reconstruction error r(x) and t, the maximum
of the reconstruction errors on the training set :

s(x) = σ

(
2 ∗ r(x)− t

t

)
(1)

The higher the reconstruction error, the higher the anomaly score; and recon-
struction errors greater than t gave anomaly scores above 0.5. This anomaly
score is between 0 and 1 and can be interpreted as the probability of the vector
x to be an anomaly with respect to the training set distribution.

Finally, a predefined threshold τ ∈ [0, 1] was used on the anomaly score to
have a binary decision (1 being the anomaly label and 0 the normal label) :

A(x) =

{
1, if s(x) ≥ τ.

0, otherwise.
(2)

Increasing τ would decrease false alarms as higher deviation from the maximum
reconstruction error on the training set would be needed to be detected as an
anomaly.
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4 Experimental results

4.1 Evaluation platform

Our experimental platform in Figure 4 is mainly based on the STMicroelectron-
ics evaluation board STM32MP157F-DK2 [5] running an embedded Buildroot
distribution with a SLTS (Super Long Term Support) Linux kernel 6.1. Its pro-
cessor is widely used in embedded devices with high resources requirements, such
as I-IoT gateways or PLC, and has two ARM Cortex-A7 cores running at 800
MHz. Each core of the processor provides 42 HPCs and enables the extraction
of measurements from four registers simultaneously, in addition to CPU cycles
register. As discussed in Section 2, we extracted measurements from the HPC
registers every 10 ms using a dedicated kernel module to extract the values and
to limit the performance overhead.

We implemented software scripts on this platform to reproduce the internal
behavior of off-the-shelf industrial embedded systems. In our case, I-IoT and PLC
functionalities were considered as the normal behavior of the system. The PLC
abstraction executes control logic using OpenPLC [7] to drive a hydroelectric
simulated physical process using Modbus TCP protocol; it also communicates
with a SCADA server that displays the state of each sensors and actuators. The
I-IoT gateway extracts data sensors from a Raspberry Pi Sense HAT add-on
board using I²C communication bus and sends the values to an I-IoT server.

Fig. 4. Evaluation platform

The goal of our detection solution is to detect malicious modifications of
the system and/or malicious applications aiming at disrupting the availability,
integrity or confidentiality/privacy of target applications and their data. Ap-
plicative malwares were developed to stress the target system and to evaluate
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the detection mechanisms, and were written from scratch so they could be up-
datable and expandable.
Even if I-IoT devices or PLC are not connected to the Internet, they are con-
nected to Information Technology (IT) systems or supervision computers within
an internal network. The attacker can gain access to the IT systems thanks to
vulnerabilities or misconfigured network defenses that then allows connecting to
the internal network, and thus to the target device. However in this work, we
mainly focused on the main impacts of a malicious behavior on the device, so
we considered that the attacker is already connected to the target system with
super-user privileges.

Malware 1 - Data transfer to attacker (M1): This malware aims to mimic the
attacker sending a memory dump with potentially confidential data to its at-
tacker’s server. It is based on a FTP client that sends all files from a defined
folder to the FTP server.

Malware 2 - Task execution with data leakage (M2): This malware aims at run-
ning a heavy resource consuming application on the target system. We chose a
cryptocurrency mining use-case as such malwares were infecting many real em-
bedded devices in the past years. The mining is performed by cpuminer software
[1] on the target system and a Stratum server.

Malware 3 - Cryptolocker (M3): This malware aims at mimicking the behavior
of a classic cryptolocker, a type of ransomware that encrypts either a file or a
directory making its content inaccessible. This malware connects to the target
system via SSH and then encrypts the target directory using ccrypt, a Linux
utility for file encryption and decryption.

Malware 4 - Modbus TCP flooding (M4): A significant threat to industrial con-
trol systems (ICS) is the denial-of-service (DoS) attack on industrial communica-
tion protocols, which can lead to the disruption or corruption of the associated
physical processes. One such attack involves Modbus flooding, where the at-
tacker sends a high volume of requests to a Modbus TCP server, overwhelming
its capacity.

Malware 5 - SSH bruteforce (M5): Dictionary based attacks on telnet or SSH
services are one of the most common vectors of attacks in I-IoT devices. The
implemented attack is based on Hydra [2], a widely used password-cracking tool
that can perform brute-force or dictionary-based attacks.

Malware 6 - Communication DoS (M6): This malware aims at blocking commu-
nications between the application OpenPLC running on the target to execute
control logic and the rest of its environment (namely the SCADA server and
the physical process simulator). We add an iptables rule on the target system
that blocks incoming and outgoing communication on TCP port associated with
Modbus TCP.
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Evasivity: Strategies to soften the impact of the malwares on the device were also
developed and are presented in Table 1. Malwares M4 and M6 do not integrate
such strategies. These strategies allow to lower the visibility of the malwares by
detection mechanisms.

Table 1. Evasivity of malwares

Malware Name Evasivity

M1 Data transfer to attacker Files are transferred in decreasing order of size

M2 Task execution with data
leakage

Ten executions of cpuminer with evasivity
parameter from 0 to 100 for the last execution

M3 Cryptolocker Files are encrypted in decreasing order of size
with a sleeping time in between

M5 SSH bruteforce Hydra is executed with a decreasing number of
threads

4.2 Dataset

Applications: The dataset with the selected HPCs contained executions of sev-
eral applications :

– Normal behavior (N) : nominal and safe behavior of the system with Open-
PLC application handling the PLC logic of the physical process. Data from
this application were labelled as 0 (benign state) and represented a recording
of 1 hour.

– Succession of malware applications : all malwares described in Section 4.1
were sequentially executed on top of the normal behavior. Data obtained
during malware executions were labelled as 1 (anomaly state). Some mal-
wares were executed with evasivity strategies as described in Table 1.

Training and evaluation split for ML model: The dataset was divided into 2
parts for the training and the evaluation of the ML anomaly detection model
respectively. The training set contained only data from the benign state of the
system, so that the model could learn the nominal distribution and detect any
deviation from it as an anomaly. This set was used to train the anomaly de-
tection model and was made of the first 80% of the normal behavior recording
(corresponding to a contiguous recording of 2880 seconds).
Conversely, the goal of the evaluation set (also called test set) was to evaluate
the trained detection model on new data that were not seen during training.
This allowed assessing model’s performances and its ability to generalize on new
data. Evaluation metrics (see Section 4.3) were computed on this set. The re-
maining 20% of the normal behavior recording was incorporated into the test set
(corresponding to a contiguous recording of 720 seconds), in conjunction with
all entire malware recordings.
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4.3 Anomaly detection results

As explained in Section 3.1, we selected HPCs based on mutual information
with the label. The five selected HPCs, that had the highest dependency with
the label, were :

– DATA_WRITE_INSTR: Counts the number of data write instructions ac-
cepted by the Load Store Unit.

– Data Memory Access: Counts the number of read or write instructions in
the data memory.

– Bus access write: Counts the number of bus accesses for write instructions.
– Bus Cycles: Counts the number of clock cycles used for write or read in-

structions on bus.
– CPU cycles: Counts the number of clock cycles of the CPU.

Selected HPCs signals were resampled and smoothed as discussed in Section
3.1. A sliding window of 100 timesteps was then used to extract 1 second time
windows and compute features (see Section 3.2). On the training set, the slid-
ing window moved with a step of 1 to augment the number of windows during
training. However, the window moved with a step equal to the window size on
the test set to have non-overlapping windows for the evaluation resembling a
real-time scenario. On each window, 20 features were computed for each of the
5 HPC, resulting in features vectors with 100 components.

The encoder and the decoder of the AE model both had 3 fully-connected
hidden layers (with Exponential Linear Unit activation) with 128, 64 and 32
units for the encoder and 32, 64, 128 for the decoder. The output layer of the
encoder had 16 units (with tanh activation) and the output of the decoder had
100 units (=size of the features vectors). Dropout regularization was also used
during training with a rate of 0.2. The AE model was trained on the scaled
features vectors from the training set during 50 epochs on batches of size 512
using Adam optimizer and Mean-Squared Error loss function.

Evaluation metrics We evaluated the binary detection with True Positive Rate
(TPR) and False Positive Rate (FPR) metrics computed on the test set. These
two metrics represent respectively the proportion of time windows from mal-
ware executions correctly labelled as anomalies by the model and the proportion
of time windows from the benign application misclassified as anomalies. TPR
should be maximized, whereas FPR should be as low as possible. In our use case,
decreasing the FPR is crucial because a detection system with too many false
alarms would be unusable.
We also evaluated the model by computing the detection accuracy on each appli-
cation (Acca for application a) in the test dataset. Accuracy is the proportion of
time windows correctly classified by the model. In our case, accuracy on an ap-
plication is the proportion of the application execution time correctly predicted.
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Table 2. Evaluation of anomaly detection model on the test set

TPR FPR AccM1 AccM2 AccM3 AccM4 AccM5 AccM6

τ = 0.4 42.04 % 0.14 % 2.07 % 73.18 % 22.57 % 100 % 41.46 % 0.83 %

τ = 0.5 41.19 % 0.14 % 1.67 % 70.25 % 18.96 % 100 % 41.33 % 0.83 %

τ = 0.6 40.35 % 0 % 1.67 % 67.32 % 16.49 % 100 % 41.03 % 0.56 %

Results The binary decision computed by the model with Equation (2) was
evaluated for 3 values of threshold τ : 0.4, 0.5 and 0.6. Values of the metrics for
those 3 thresholds are given in Table 2.

Anomaly scores computed by the model on the test set, using Equation (1),
for each application are shown in Figure 5.

Fig. 5. Anomaly scores on the test set for each application (vertical dashed lines in
M2 separate different executions of the same application). Orange line indicates the
warning threshold and red line the alert threshold

The results in Table 2 show that increasing the threshold reduced the FPR
from 0.14% with a threshold of 0.4 to 0% with a threshold of 0.6. TPR was
slighlty reduced when increasing the threshold : from 42.04% with 0.4 to 40.35%
with 0.6.

The low TPR and accuracy values on malware could be explained because a
malware execution does not contain only malicious portions. Indeed, a malware
could also perform safe operations in addition to its malicious payload. Detect-
ing the entire execution of an attack as abnormal is not necessary, we only need
the model to detect at least one portion (even small) of the attack execution to
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consider it as detected. Therefore the TPR and the accuracy on malwares can
be low without affecting the model capacity of raising alarms during attacks.

For our solution, we chose to use 0.4 as a warning threshold (in orange on
Figure 5) that indicated when something needed attention without necessarily
being detected as an attack; and 0.6 as the alert threshold (in red on Figure 5).

Based on results from Table 2 and Figure 5, we can give more details on the
model’s detection performance on each malicious application :

– data transfer (M1) : only the beginning of the attack where larger files were
sent raised an alarm. The evasivity strategy of the attack allowed it to bypass
the detection by not raising alarms when smaller files were being sent.

– CPU miner attack (M2) : The model detected anomalies in each of the 10
executions (separated by the black-dashed lines on Figure 5) of this attack
(with 67.32% detection). As explained before and since at least one portion
in each execution raised an alarm, we consider this attack as well detected
by the model.

– Cryptolocker (M3) : 16.49% of the attack execution was detected as ab-
normal by the model and Figure 5 shows that the anomaly scores decreased
during the execution. As for the data transfer attack, dealing with small files
did not raise alarm and bypassed the model.

– Modbus TCP flooding (M4): this attack execution was entirely detected,
with 100% accuracy and anomaly scores constantly above the alert threshold.

– SSH bruteforce (M5) : almost half of the attack execution was detected
(41.03%). The model raised alarm during this attack making it well detected.

– Communication DOS (M6) : only a poor proportion of the attack execu-
tion was detected, however the model still raised some alarms during the
execution.

4.4 Overhead results

In this section, we evaluated the performance overhead introduced by our so-
lution, focusing on memory usage, CPU consumption and network traffic. Un-
derstanding these impacts on an embedded device is mandatory for determining
the feasibility of deploying such solution in a resource-constrained environment.

Impact on the memory and CPU resources: To measure the overhead on re-
source consumption, global memory and CPU consumption were continuously
monitored on the platform over two-hour periods, both in the presence and ab-
sence of the detection solution. The memory and CPU usage remained stable
and comparable to that of the reference consumption. This indicates that our
solution did not introduce significant additional memory demands, making it
suitable for systems with limited memory resources.
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Impact on the network: Our embedded solution transmitted raw HPC to the
control server at a rate of 2976 bytes per second using MQTT protocol. These
2976 bytes corresponded to the MQTT frame used to transmit one hundred
sets of five 32-bit HPC registers and 64-bit timestamp value. This transmission
rate is manageable for most network infrastructures; however, in bandwidth-
constrained environments, this could contribute to network congestion.

Anomaly detection inference time: We evaluated the time to make an inference
on a 1 second HPC time window. The inference time comprised the preprocessing
of the signals, the features computation and the detection by the ML model.
Evaluated on a Intel Core i5-1235U with 10 cores at 1.3 GHz, the mean inference
time for one inference was about 73 ms (with a standard deviation of 23 ms).

In summary, our anomaly detection solution demonstrated a low memory and
CPU footprint and a manageable network usage. These findings suggests that the
solution is viable for deployment in embedded systems with limited resources.
However, for applications with stricter performance and real-time requirements,
further optimizations may be necessary. One solution would be to implement
the ML model in the embedded device to reduce the network bandwidth usage;
however, this approach would result in increased CPU and memory consumption.

5 Related works and discussions

Numerous approaches were proposed in the state-of-the-art to detect and mit-
igate attacks targeting embedded devices such as PLC or I-IoT gateway. Main
characteristics of these approaches are summarized in Table 3, with a comparison
to our proposed solution.

As illustrated in Table 3, two different approaches were adopted in the sci-
entific literature. The first approach involved the use of numerous real-world
malwares, taken from public malwares library, and benign samples to measure
the accuracy of their detection algorithms. The second approach involved forged
attacks to mimic potential impacts of an attack in order to detect all deviations
from the reference behavior of the system. If the first approach evaluated the
solution with a greater library of normal and malicious executables, each sample
was evaluated individually in a sandbox, which was not an accurate representa-
tion of a real-life scenario. At the opposite, forged attacks added more realism
in the malwares impacts as they were specifically developed to target a real-life
scenario such as the behavior of a PLC or a data gateway.
Another important consideration in evaluating anomaly detection methods is
the granularity of analysis of the samples. Some approaches operated without
appropriate timing windows, triggering alerts for each individual extracted sam-
ple or for short timing windows. While these solutions offer a better sensitivity
and detection speed, they also increased the potential number of false alarms.
For example, a seemingly low FPR of 0.1% may become problematic when ap-
plied at high detection rate such as 10ms as it would introduce a potential false
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Table 3. State-of-the-art of H-IDS based on HPC for embedded devices

Method
Sampling

rate
[window]

HPC
extrac-

tor
Target Attacks Overhead Detection

[18] 1kHz
[250ms] PAPI PLC Wago forged

(6,no) CPU: 10% Off

Raspberry Pi Mem: 5%

[9] 0.2Hz
[1800s]

kernel
module

Raspberry Pi
3b

forged
(8,no) N/A On, R

[19] 1kHz
[5-45 ms] perf Raspberry Pi

3b malwares N/A Off

[31] N/A perf Raspberry Pi
3b+

forged
(1,no) N/A Off

[33] 1kHz
perf &
simper-

perf

Google Pixel
4 malwares execution

time: 3.2% On, L

[16] 1kHz
[0.25s] PAPI Raspberry Pi forged

(3,no) N/A Off

[6] 1kHz perf Raspberry Pi
2b malwares N/A Off

[32] 1kHz
[100ms] hardware Xilinx

ARTIX-7
forged
(7,no)

hardware
implemen-

tation
On, R

Our
method

100Hz
[1s]

kernel
module STM32MP1 forged

(6,yes) 0% On, R

Sampling rate [window]: sampling rate and timing window used by the solution
HPC extractor: method used to extract the HPC values
Target: target device used for the evaluation
Attacks: type of attacks with the number of attacks and the consideration of evasive-
ness for forged attacks
Overhead: performance overhead on the target device
Detection: Online (On) represents a real-time detection and Offline (Off) a detection
at a later time. Local (L) means a detection on the targeted device and Remote (R)
on a distant server
N/A: no information provided by the authors

alert every 10 seconds making the solution unusable. Conversely, solutions with
equivalent FPR yet with suitable timing windows yield a reduced frequency of
false alarms. Identifying the best compromise between detection accuracy, over-
head and the number of false alerts is crucial before deploying such detection
solution in real use-cases. In our solution, we chose a sampling rate of 100Hz
and a timing window of 1 second (i.e. 100 measurements) which seemed the best
compromise between these metrics.

Evasive attacks, which are designed to bypass detection systems by lowering
their impact on the target, were rarely integrated to evaluate the accuracy of
a detection method in the literature. In our evaluation, we proposed different
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evasive strategies such as increasing the sleep time between task execution or
decreasing the file size for a datalogger or a cryptolocker attacks. Our results
highlighted the difficulty to detect correctly an attack if its malicious payload
was hidden between the normal process of the system.

Despite significant progress in the field of attack detection using hardware
performance counters, very few papers proposed a comprehensive and real-time
solution. Most of the solution described in the state-of-the-art were based on
tools to extract the raw HPC values such as PAPI Library [3] or perf [4] that
seem not appropriate for a real solution. Our solution was based on dedicated
kernel module to extract HPC data and all firmware to send these data from the
kernel space to a remote server in order to compute the anomaly score. Using a
kernel module enhances security and reduces overhead compared to user-space
solution but it reduces portability across different CPU architectures.

6 Conclusion

In this work, we proposed a novel H-IDS leveraging Hardware Performance Coun-
ters (HPCs) for anomaly detection on embedded devices. Our system extracts
HPC values at the kernel level and processes them using statistical features on
1-second time windows. An autoencoder-based model is then used to identify
deviations from the learned normal behavior of the system.
To support the evaluation of our approach, we introduced a realistic experimen-
tal platform simulating a physical process controlled by OpenPLC. This setup
allowed us to emulate industrial control systems and to test the robustness of
our H-IDS against a set of common and evasive attacks targeting embedded de-
vices. Our results demonstrate that the proposed method achieves low overhead
and no false alarm, while successfully detecting various types of attacks, such
as Modbus TCP flooding, SSH brute-force, and CPU miner activity. However,
some highly evasive attacks, such as data exfiltration and cryptolockers, were
able to evade detection, highlighting current limitations of the solution.
Future work will focus on expanding the attack set and improving the realism of
the adversarial behaviors by integrating more advanced evasiveness parameters.
Additionally, we plan to embed the ML model directly into the monitored device
to remove the remote communication. This would reduce network impact but in-
troduce new challenges related to resource usage and potential self-interference,
as the monitoring process itself may affect the HPCs. We also envision enhanc-
ing the anomaly detection capabilities by incorporating complementary signals,
such as system call traces, to provide a more holistic view of system behavior.
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